Nanocrystalline (NC) Ni-Co/CoO functionally graded materials with excellent lubricating, high anti-corrosion and anti-wear performance were fabricated by electrodeposition and subsequent cyclic thermal oxidation and quenching. Transmission electron microscopy and energy dispersive x-ray spectroscopy investigations show that bulk Ni-Co gradient deposits with an average grain size in the range of 13-40 nm demonstrated a graded structure transition from face-centred cubic to hexagonal close packed and graded composition changes from Ni-rich to Co-rich regions with the increase in deposit thickness. X-ray diffraction and x-ray photoelectron spectroscopy analysis indicated the surface layer of NC Ni-Co graded materials to be mainly composed of dense and ultrafine CoO with a (111) preferred orientation. The NC Ni-Co/CoO functionally graded materials exhibited significantly enhanced corrosion resistance in both NaOH and NaCl solutions and remarkably improved wear resistance and dry self-lubricating performance when compared with the NC Ni and Ni-Co graded deposits under dry sliding wear conditions. The higher corrosion and tribological performance of NC Ni-Co/CoO graded materials can be attributed to the graded microstructure within the deposits, the anti-corrosion barrier of a dense oxide layer and the solid lubrication effect of CoO-rich tribo-surface films.
Face tracking serves as the crucial initial step in mobile applications trying to analyse target faces over time in mobile settings. However, this problem has received little attention, mainly due to the scarcity of dedicated face tracking benchmarks. In this work, we introduce MobiFace, the first dataset for single face tracking in mobile situations. It consists of 80 unedited live-streaming mobile videos captured by 70 different smartphone users in fully unconstrained environments. Over 95K bounding boxes are manually labelled. The videos are carefully selected to cover typical smartphone usage. The videos are also annotated with 14 attributes, including 6 newly proposed attributes and 8 commonly seen in object tracking. 36 state-of-the-art trackers, including facial landmark trackers, generic object trackers and trackers that we have fine-tuned or improved, are evaluated. The results suggest that mobile face tracking cannot be solved through existing approaches. In addition, we show that fine-tuning on the MobiFace training data significantly boosts the performance of deep learningbased trackers, suggesting that MobiFace captures the unique characteristics of mobile face tracking. Our goal is to offer the community a diverse dataset to enable the design and evaluation of mobile face trackers. The dataset, annotations and the evaluation server will be on https://mobiface. github.io/.
The effect of hydrofluoric acid (HF) pretreatment on flotation of feldspar and quartz using dodecylamine (DDA) as collector was investigated by micro-flotation, zeta potential, pyrene fluorescence spectroscopy, attenuated total reflection flourier transformed infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and bench scale flotation. The micro-flotation tests revealed that there was little difference in the flotation of feldspar and quartz at pH 2, using H 2 SO 4 as pH regulator. After HF pretreatment, the floatability of feldspar significantly increased while the floatability of quartz showed no change. HF pretreatment resulted in leaching of SiO 2 and enrichment of Na, K and Al on the feldspar surface. Consequently, the negative surface charge of feldspar increased at pH 2, which allowed for the flotation separation of the feasible minerals. This took place via an increased electrostatic adsorption between DDA and Na, K, Al on the feldspar surface, which effectively increased its hydrophobicity and as a result, improved the floatability of feldspar. An alternative process which exhibited effective separation of quartz and feldspar while recycling the tailwater from the flotation was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.