Data-driven epoch, the development of machine learning (ML) in materials and device design is an irreversible trend. Its ability and efficiency to handle nonlinear and game-playing problems is unmatched by traditional simulation computing software and trial-error experiments. Perovskite solar cells are complex physicochemical devices (systems) that consist of perovskite materials, transport layer materials, and electrodes. Predicting the physicochemical properties and screening the component materials related to perovskite solar cells is the strong point of ML. However, the applications of ML in perovskite solar cells and component materials has only begun to boom in the last two years, so it is necessary to provide a review of the involved ML technologies, the application status, the facing urgent challenges and the development blueprint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.