The new alpha-Fe(Te,Se) superconductors share the common iron building block and ferminology with the LaFeAsO and BaFe(2)As(2) families of superconductors. In contrast with the predicted commensurate spin-density-wave order at the nesting wave vector (pi, 0), a completely different magnetic order with a composition tunable propagation vector (deltapi, deltapi) was determined for the parent compound Fe_{1+y}Te in this powder and single-crystal neutron diffraction study. The new antiferromagnetic order survives as a short-range one even in the highest T_{C} sample. An alternative to the prevailing nesting Fermi surface mechanism is required to understand the latest family of ferrous superconductors.
We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagomé lattice antiferromagnet ZnCu3(OH)6Cl2. The susceptibility indicates a Curie-Weiss temperature of theta CW approximately = -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law temperature dependence. These results suggest that an unusual spin liquid state with essentially gapless excitations is realized in this kagomé lattice system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.