Iron-sulfur proteins are among the primary targets of nitric oxide in cells. Previous studies have shown that iron-sulfur clusters hosted by cysteine residues in proteins are readily disrupted by nitric oxide forming a protein-bound dinitrosyl iron complex, thiolate-bridged di-iron tetranitrosyl complex, or octanitrosyl cluster. Here we report that human mitochondrial protein Miner2 [2Fe-2S] clusters can bind nitric oxide without disruption of the clusters. Miner2 is a member of a new CDGSH iron-sulfur protein family that also includes two mitochondrial proteins: the type II diabetes-related mitoNEET and the Wolfram syndrome 2-linked Miner1. Miner2 contains two CDGSH motifs, and each CDGSH motif hosts a [2Fe-2S] cluster via three cysteine and one histidine residues. Binding of nitric oxide in the reduced Miner2 [2Fe-2S] clusters produces a major absorption peak at 422 nm without releasing iron or sulfide from the clusters. The EPR measurements and mass spectrometry analyses further reveal that nitric oxide binds to the reduced [2Fe-2S] clusters in Miner2, with each cluster binding one nitric oxide. Although the [2Fe-2S] cluster in purified human mitoNEET and Miner1 fails to bind nitric oxide, a single mutation of Asp-96 to Val in mitoNEET or Asp-123 to Val in Miner1 facilitates nitric oxide binding in the [2Fe-2S] cluster, indicating that a subtle change of protein structure may switch mitoNEET and Miner1 to bind nitric oxide. The results suggest that binding of nitric oxide in the CDGSH-type [2Fe-2S] clusters in mitochondrial protein Miner2 may represent a new nitric oxide signaling mode in cells.
Antimicrobial peptides (AMPs) have a unique action mechanism that can help to solve global problems in antibiotic resistance. However, their low therapeutic index and poor stability seriously hamper their development as therapeutic agents. In order to overcome these problems, we designed peptides based on the sequence template XXRXXRRzzRRXXRXX-NH 2 , where X represents a hydrophobic amino acid like Phe (F), Ile (I), and Leu (L), while zz represents Gly-Gly (GG) or d-Pro-Gly (pG). Showing effective antimicrobial activity against Gram-negative bacteria and low toxicity, designed peptides had a tendency to form an α-helical structure in membrane-mimetic environments. Among them, peptide LR pG (X: L, zz: pG) showed the highest geometric mean average treatment index (GM TI = 73.1), better salt, temperature and pH stability, and an additive effect with conventional antibiotics. Peptide LR pG played the role of anti-Gram-negative bacteria through destroying the cell membrane. In addition, peptide LR pG also exhibited an anti-inflammatory activity by effectively neutralizing endotoxin. Briefly, peptide LR pG has the potential to serve as a therapeutic agent to reduce antibiotic resistance owing to its high therapeutic index and great stability.
We report the palladium-catalyzed enantioselective cyclization of 1,6-enamidynes to form spirocyclic ring systems. We applied this methodology to the concise synthesis of the skeletal core of the kopsifoline alkaloids.
An integrated application of multivariable analysis and artificial intelligence was used for the first time to find potential biomarkers relating to the occurrence and development of liver-Qi syndrome PMS induced by electric stimulation in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.