Background: Delayed healing of diabetic cutaneous wounds is one of the most common complications of type 2 diabetes mellitus (T2DM), which can bring great distress to patients. In diabetic patients, macrophages accumulate around skin wounds and produce NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasomes, which in turn undergo pyroptosis and produce inflammatory factors such as interleukin-1β that affect wound healing. Although our previous study revealed that apoptotic extracellular vesicles (ApoEVs) produced from mesenchymal stem cells (MSCs) improve cutaneous wound healing in normal C57BL/6 mice, whether ApoEVs can also improve diabetic wound healing remains unclear. Methods: Umbilical cord mesenchymal stem cells (UCMSCs) were cultured in vitro and apoptosis was induced. ApoEVs were extracted and identified and used in a T2DM mouse cutaneous wound model to evaluate the efficacy. The inhibitory effect of ApoEVs on macrophage pyroptosis was verified in vivo and in vitro, and the level of oxidative stress in macrophages was assessed to explore the mechanism by which ApoEVs play a role. Results: UCMSC-derived ApoEVs improved skin defect healing in T2DM mice. Moreover, UCMSC-derived ApoEVs inhibited macrophage pyroptosis in T2DM mice in vivo as well as in vitro under high glucose culture conditions. In addition, we demonstrated that ApoEVs reduce oxidative stress levels, which is a possible mechanism by which they inhibit macrophage pyroptosis. Conclusions:Our study confirmed that local application of UCMSC-derived ApoEVs improved cutaneous wound healing in T2DM mice. ApoEVs, as products of MSC apoptosis, can inhibit macrophage pyroptosis and regulate the death process by decreasing the level of oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.