Background Lignocellulosic biomass is recognized as an effective potential substrate for biobutanol production. Though many pretreatment and detoxification methods have been set up, the fermentability of detoxicated lignocellulosic substrate is still far lower than that of starchy feedstocks. On the other hand, the number of recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strains is also quite limited, demonstrating the physiological complexity of solventogenic clostridia. In fact, the strain performance is greatly impacted by process control. developing efficient process control strategies could be a feasible solution to this problem. Results In this study, oxidoreduction potential (ORP) controlling was applied to increase the fermentability of enzymatically hydrolyzed steam-exploded corn stover (SECS) for butanol production. When ORP of detoxicated SECS was controlled at − 350 mV, the period of fermentation was shortened by 6 h with an increase of 27.5% in the total solvent (to 18.1 g/L) and 34.2% in butanol (to 10.2 g/L) respectively. Silico modeling revealed that the fluxes of NADPH, NADH and ATP strongly differed between the different scenarios. Quantitative analysis showed that intracellular concentrations of ATP, NADPH/NADP+, and NADH/NAD+ were increased by 25.1%, 81.8%, and 62.5%. ORP controlling also resulted in a 2.1-fold increase in butyraldehyde dehydrogenase, a 1.2-fold increase in butanol dehydrogenase and 29% increase in the cell integrity. Conclusion ORP control strategy effectively changed the intracellular metabolic spectrum and significantly improved Clostridium cell growth and butanol production. The working mechanism can be summarized into three aspects: First, Glycolysis and TCA circulation pathways were strengthened through key nodes such as pyruvate carboxylase [EC: 6.4.1.1], which provided sufficient NADH and NADPH for the cell. Second, sufficient ATP was provided to avoid “acid crash”. Third, the key enzymes activities regulating butanol biosynthesis and cell membrane integrity were improved.
Background: Lignocellulosic biomass is recognized as an effective potential substrate for biobutanol production. Though many pretreatment and detoxification methods have been set up, the fermentability of detoxicated lignocellulosic substrate is still far lower than that of starchy feedstocks. On the other hand, the number of recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strains are also quite limited, demonstrating the physiological complexity of solventogenic clostridia. In fact, the strain performance is greatly impacted by process controlling. developing efficient process control strategies could be a feasible solution to this problem.Result: In this study, oxidoreduction potential (ORP) controlling was applied to increase the fermentability of enzymatically hydrolyzed steam-exploded corn stover (SECS) for butanol production. When ORP of detoxicated SECS was controlled at -350mV, the period of fermentation was shortened by 6 h with an increase of 27.5% in the total solvent (to 18.1 g/L) and 34.2% in butanol (to 10.2 g/L) respectively. Silico modeling revealed that the fluxes of NADPH, NADH and ATP strongly differed between the different scenarios. Quantitative analysis showed that intracellular concentrations of ATP, NADPH/NADP+ and NADH/NAD+ were increased by 25.1%,81.8% and 62.5%. ORP controlling also resulted in a 2.1-fold increase in butyraldehyde dehydrogenase, a 1.2-fold increase in butanol dehydrogenase and 29% increase in the cell integrity.Conclusion: ORP control strategy is effective for altering intracellular metabolic profiles and can significantly improve Clostridium cell growth and butanol production. The working mechanism can be summarized into three aspects: First, Glycolysis and TCA circulation pathway are strengthened through key nodes such as pyruvate carboxylase [EC: 6.4.1.1], which provides sufficient NADH and NADPH for the cell. Second, sufficient ATP is provided to avoid “acid crash”. Third, the key enzymes activities regulating butanol biosynthesis and cell membrane integrity was improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.