High-precision day-ahead short-term photovoltaic (PV) output forecasting is essential in PV integration to the smart distribution networks and multi-energy system, and provides the foundation for the security, stability, and economic operation of PV systems. This paper proposes a hybrid model based on principal component analysis, grey wolf optimization and generalized regression neural network (PCA-GWO-GRNN) for day-ahead short-term PV output forecasting, considering the features of multiple influencing factors and strong uncertainty. This paper first uses the PCA to reduce the dimension of meteorological features. Then, the high-precision day-ahead short-term PV output forecasting based on GWO-GRNN model is realized. GRNN is used to regressively analyze the input features after dimension reduction, and the parameter of GRNN is optimized by using GWO, which has strong global searching ability and fast convergence. The proposed PCA-GWO-GRNN model effectively achieves a high precision in day-ahead shortterm PV output forecasting, which is demonstrated in a case study on a real PV plant in Jiangsu province, China. The results have validated the accuracy and applicability of the proposed model in real scenarios. Index Terms-Photovoltaic output forecasting, principal component analysis (PCA), grey wolf optimization (GWO), generalized regression neural network (GRNN).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.