Background: Tyrosine-based, YXXØ-type signals mediate protein sorting through binding to adaptor subunits. Results: X-ray crystallography shows how YXXØ signals bind to the immunoglobulin-like fold of 3A. Conclusion: The binding site for YXXØ signals on 3A is similar to that of 2 but distinct from that of 4. Significance: The study explains the basis for the recognition of diverse YXXØ signals by subunits.
Alzheimer’s disease (AD) is characterized by the buildup of amyloid-β peptides (Aβ) aggregates derived from proteolytic processing of the β-amyloid precursor protein (APP). Amyloidogenic cleavage of APP by β-secretase/BACE1 generates the C-terminal fragment C99/CTFβ that can be subsequently cleaved by γ-secretase to produce Aβ. Growing evidence indicates that high levels of C99/CTFβ are determinant for AD. Although it has been postulated that γ-secretase-independent pathways must control C99/CTFβ levels, the contribution of organelles with degradative functions, such as the endoplasmic reticulum (ER) or lysosomes, is unclear. In this report, we investigated the turnover and amyloidogenic processing of C99/CTFβ in human H4 neuroglioma cells, and found that C99/CTFβ is localized at the Golgi apparatus in contrast to APP, which is mostly found in endosomes. Conditions that localized C99/CTFβ to the ER resulted in its degradation in a proteasome-dependent manner that first required polyubiquitination, consistent with an active role of the ER associated degradation (ERAD) in this process. Furthermore, when proteasomal activity was inhibited C99/CTFβ was degraded in a chloroquine (CQ)-sensitive compartment, implicating lysosomes as alternative sites for its degradation. Our results highlight a crosstalk between degradation pathways within the ER and lysosomes to avoid protein accumulation and toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.