Background. Liver transplantation (LT) is the most effective treatment for various end-stage liver diseases. However, the cellular complexity and intercellular crosstalk of the transplanted liver have constrained analyses of graft reconstruction after LT. Methods. We established an immune-tolerated orthotopic LT mouse model to understand the physiological process of graft recovery and intercellular crosstalk. We employed single-cell RNA sequencing and cytometry by time-of-flight to comprehensively reveal the cellular landscape. Results. We identified an acute and stable phase during perioperative graft recovery. Using single-cell technology, we made detailed annotations of the cellular landscape of the transplanted liver and determined dynamic modifications of these cells during LT. We found that 96% of graft-derived immune cells were replaced by recipient-derived cells from the preoperative to the stable phase. However, CD206+MerTK+ macrophages and CD49a+CD49b- natural killer cells were composed of both graft and recipient sources even in the stable phase. Intriguingly, the transcriptional profiles of these populations exhibited tissue-resident characteristics, suggesting that recipient-derived macrophages and natural killer cells have the potential to differentiate into ‘tissue-resident cells’ after LT. Furthermore, we described the transcriptional characteristics of these populations and implicated their role in regulating the metabolic and immune remodeling of the transplanted liver. Conclusions. In summary, this study delineated a cell atlas (type-proportion-source-time) of the transplanted liver and shed light on the physiological process of graft reconstruction and graft-recipient crosstalk.
Hepatic macrophages, the key cellular components of the liver, emerge as essential players in liver inflammation, tissue repair and subsequent fibrosis, as well as tumorigenesis. Recently, the TAM receptor tyrosine kinase family, consisting of Tyro3, Axl and MerTK, was found to be a pivotal modulator of macrophages. Activation of macrophage TAM receptor signalling promotes the efferocytosis of apoptotic cells and skews the polarization of macrophages. After briefly reviewing the mechanisms of TAM receptor signalling in macrophage polarization, we focus on their role in liver diseases from acute injury to chronic inflammation, fibrosis and then to tumorigenesis. Notably, macrophage TAM receptor signalling seems to be a two‐edged sword for liver diseases. On one hand, the activation of TAM receptor signalling inhibits inflammation and facilitates tissue repair during acute liver injury. On the other hand, continuous activation of the signalling contributes to the process of chronic inflammation into fibrosis and tumorigenesis by evoking hepatic stellate cells and inhibiting anti‐tumour immunity. Therefore, targeting macrophage TAM receptors and clarifying its downstream pathways will be exciting prospects for the precaution and treatment of liver diseases, particularly at different stages or statuses.
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death globally and liver transplantation (LT) can serve as the best curative treatment option. However, HCC recurrence after LT remains the major obstacle to the long-term survival of recipients. Recently, immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many cancers and provided a new treatment strategy for post-LT HCC recurrence. Evidence has been accumulated with the real-world application of ICIs in patients with post-LT HCC recurrence. Notably, the use of these agents as immunity boosters in recipients treated with immunosuppressors is still controversial. In this review, we summarized the immunotherapy for post-LT HCC recurrence and conducted an efficacy and safety evaluation based on the current experience of ICIs for post-LT HCC recurrence. In addition, we further discussed the potential mechanism of ICIs and immunosuppressive agents in regulating the balance between immune immunosuppression and lasting anti-tumor immunity.
Background Serum exosome-based liquid biopsy has significant advantages for screening and diagnosing hepatocellular carcinoma (HCC). P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are novel small silencing RNAs that have been identified to function in cancer-related signalling pathways. However, studies on the presence of piRNAs in serum exosomes from HCC patients and their diagnostic values in HCC are not well reported. Our aim is to validate serum exosome-derived piRNAs as the valuable component of liquid biopsy for diagnosing HCC. Methods We used small RNA (sRNA) sequencing to profile piRNAs from serum exosomes and describe the base distribution characteristics of serum exosome-derived piRNAs. Serum exosomes from 125 HCC patients and 44 nontumor donors were included in this study. Results We found that piRNAs were components of serum exosomes from HCC patients. A total of 253 differentially expressed serum exosome-derived piRNAs were screened from HCC compared with the piRNAs from nontumor donors. Serum exosome-derived piRNAs from HCC displayed a distinctive base distribution. To further confirm the potential diagnostic value of serum exosome-derived piRNAs in HCC, we detected the levels of the top 5 upregulated piRNAs in our Chinese cohort. The training set and validation set both showed that all 5 piRNAs were dramatically increased in the serum exosomes from HCC compared with the piRNAs from non-tumour donors. The piRNAs could strongly identify HCC patients from non-tumour donors according to the area under the receiver operating characteristic (AUROC) model. Additionally, the piRNAs could also present significant values for the diagnosis of HCC with low tumour burden. Conclusion piRNAs enriched the components of serum exosomes from HCC and could serve as promising biomarkers for HCC diagnosis.
Graft remodeling after transplantation maintains graft functionality and determines graft survival. However, a comprehensive understanding of cellular diversity and interplay during graft remodeling remains to be fully characterized. In this study, we established a well tolerant C57BL/6 to C57BL/6 orthotopic liver transplantation (LT) mice model and observed two stages of graft recovery including an acute phase and a steady phase. We next performed single-cell RNA sequencing (scRNA-seq) and cytometry by time-of-flight (CyTOF) and recorded the cellular hierarchy in the transplanted liver during the two stages. Besides the dynamic change of cell proportion, it was notable that recipient-derived cells took over the transplanted liver in most cell types (e.g., B cells, T cells, dendritic cells, granulocytes and monocytes) except CD206+ MerTK+ macrophages and CD161+ CD49a+ CD49b−natural killer cells. We then focused on macrophages and captured 5 distinct transcriptional signatures to define novel subclusters. Using a ligand-receptor interaction strategy, we identified specific macrophage-hepatocyte interactions during the acute and stable phases, causing metabolic remodeling in the transplanted liver. Our results delineated a 4-dimension cell atlas (type-proportion-source-time) of the transplanted liver, which sheds light on the physiological process of liver graft maintenance and graft-recipient crosstalk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.