BackgroundThe development of antimicrobial resistance in the opportunistic pathogen Escherichia coli has become a global public health concern. Due to daily close contact, dogs kept as pets share the same E. coli with their owners. Therefore, the detection of antimicrobial resistance in canine E. coli is important, as the results could provide guidance for the future use of antibiotics. This study aimed to detect the prevalence of antibiotic-resistance of canine origin E. coli in Shaanxi province and to explore the inhibition effect of magnolol combined with cefquinome on MDR E. coli, so as to provide evidence for the use of antibiotics.MethodsCanine fecal samples were collected from animal hospitals. The E. coli isolates were separated and purified using various indicator media and polymerase chain reaction (PCR). Drug-resistance genes [aacC2, ant(3')-I, aph(3')-II, aac(6')-Ib-cr, aac(3')-IIe, blaKPC, blaIMP−4, blaOXA, blaCMY, blaTEM−1, blaSHV, blaCTX−M−1, blaCTX−M−9, Qnra, Qnrb, Qnrs, TetA, TetB, TetM, Ermb] were also detected by PCR. The minimum inhibitory concentration (MIC) was determined for 10 antibiotics using the broth-microdilution method. Synergistic activity of magnolol and cefquinome against multidrug-resistant (MDR) E. coli strains was investigated using checkerboard assays, time-kill curves, and drug-resistance curves.ResultsA total of 101 E. coli strains were isolated from 158 fecal samples collected from animal hospitals. MIC determinations showed that 75.25% (76/101) of the E. coli strains were MDR. A total of 22 drug-resistance genes were detected among the 101 strains. The blaTEM−1gene exhibited the highest detection rate (89.77%). The TetA and Sul gene also exhibited high detection rate (66.34 and 53.47%, respectively). Carbapenem-resistant E. coli strains were found in Shangluo and Yan'an. Additionally, in MDR E. coli initially resistant to cefquinome, magnolol increased the susceptibility to cefquinome, with an FICI (Fractional Inhibitory Concentration Index) between 0.125 and 0.5, indicating stable synergy. Furthermore, magnolol enhanced the killing effect of cefquinome against MDR E. coli. Resistance of MDR E. coli to cefquinome decreased markedly after treatment with magnolol for 15 generations.ConclusionOur study indicates that antibiotic-resistance E. coli has been found in domestic dogs. After treatment with magnolol extracted from the Chinese herb Houpo (Magnolia officinalis), the sensitivity of MDR E. coli to cefquinome was enhanced, indicating that magnolol reverses the resistance of MDR E. coli. The results of this study thus provide reference for the control of E. coli resistance.
The development of drug-resistance in the opportunistic pathogen Escherichia coli has become a global public health concern. Due to the share of similar flora between pets and their owners, the detection of pet-origin antibiotic-resistant E. coli is necessary. This study aimed to detect the prevalence of feline-origin ESBL E. coli in China and to explore the resistance elimination effect of garlic oil to cefquinome on ESBL E. coli. Cat fecal samples were collected from animal hospitals. The E. coli isolates were separated and purified by indicator media and polymerase chain reaction (PCR). ESBL genes were detected by PCR and Sanger sequencing. The MICs were determined. The synergistic effect of garlic oil and cefquinome against ESBL E. coli was investigated by checkerboard assays, time-kill and growth curves, drug-resistance curves, PI and NPN staining, and a scanning electronic microscope. A total of 80 E. coli strains were isolated from 101 fecal samples. The rate of ESBL E. coli was 52.5% (42/80). The prevailing ESBL genotypes in China were CTX-M-1, CTX-M-14, and TEM-116. In ESBL E. coli, garlic oil increased the susceptibility to cefquinome with FICIs from 0.2 to 0.7 and enhanced the killing effect of cefquinome with membrane destruction. Resistance to cefquinome decreased with treatment of garlic oil after 15 generations. Our study indicates that ESBL E. coli has been detected in cats kept as pets. The sensitivity of ESBL E. coli to cefquinome was enhanced by garlic oil, indicating that garlic oil may be a potential antibiotic enhancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.