Based on a kind of 1.5MW large-scale horizontal axis wind turbine tower, the mechanical modeling of a wind turbine tower-foundation is established, the static and dynamic analysis of the model is carried out by ANSYS software. The top displacement of the system is calculated by the static analysis to meet the design requirements in engineering. In dynamic analysis, each pile foundation is equivalent to a group of springs for the simulation of horizontal and vertical rigidity of the pile. The influence of top mass and foundation elasticity on wind turbine tower modes is analyzed, and calculated the natural frequency of the tower within a certain scope of rigidity in different directions about the piles foundation. The results show that the natural frequency of the wind turbine tower is influenced significantly by the mass on the tower top and foundation rigidity. The study provides a theoretical basis for optimal design of the wind turbine.
In the light of the structural features of the wind turbine tower and force characteristics, the mechanical model of the variable cross-section tube tower is established. Based on the elastic stability theory, the buckling of tower is studied, and the critical force formula of the tower under the concerted action of concentrated force and gravity is deduced. Calculation models are numerically simulated for the stability of the tower by using the finite element software ANSYS, and corresponding critical load is obtained. The results show that the finite element models are feasible in engineering application, and the analysis provides a theoretical basis for structural design of wind turbine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.