The solid-electrolyte interphase (SEI) layer is pivotal for the stable and rechargeable batteries especially under high rate. However, the mechanism of Li+ transport through the SEI has not been clearly...
Lithium‐sulfur (Li‐S) batteries are one of the most promising next‐generation energy‐storage systems. Nevertheless, the sluggish sulfur redox and shuttle effect in Li‐S batteries are the major obstacles to their commercial application. Previous investigations on adsorption for LiPSs have made great progress but cannot restrain the shuttle effect. Catalysts can enhance the reaction kinetics, and then alleviate the shuttle effect. The synergistic relationship between adsorption and catalysis has become the hotspot for research into suppressing the shuttle effect and improving battery performance. Herein, the adsorption‐catalysis synergy in Li‐S batteries is reviewed, the adsorption‐catalysis designs are divided into four categories: adsorption‐catalysis for LiPSs aggregation, polythionate or thiosulfate generation, and sulfur radical formation, as well as other adsorption‐catalysis. Then advanced strategies, future perspectives, and challenges are proposed to aim at long‐life and high‐efficiency Li‐S batteries.
Electrocatalytic water splitting is one of the most promising sustainable energy conversion technologies, but is limited by the sluggish electrochemical reactions. Inorganic nanomaterials have been widely used as efficient catalysts for promoting the electrochemical kinetics. Several approaches to optimize the activities of these nanocatalysts have been developed. The electronic structures of the catalysts play a pivotal role in governing the activity and thus have been identified as an essential descriptor. However, the underlying working mechanisms related to the refined electronic structures remain elusive. To establish the structure–electronic‐behavior–activity relationship, a comprehensive overview of the developed strategies to regulate the electronic structures is presented, emphasizing the surface modification, strain, phase transition, and heterostructure. Current challenges to the fundamental understanding of electron behaviors in the nanocatalysts are fully discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.