Capping molecules on the surface of nanomaterials not only enhance the dispersion and stability of nanomaterials but also greatly facilitate their surface modification and biological applications. However, most capping molecules can severely block the active sites of the catalytic core, thereby decreasing the enzymatic activity of nanomaterial-based enzyme mimics. This work demonstrates the superiority of chitosan (Ch) as a capping molecule for synthesizing catalytic platinum nanoparticles (PtNPs). The experimental results show that Ch simultaneously exhibits an excellent stabilizing effect and enhances the oxidase-like activity of PtNPs. Kinetic studies indicate that Ch-PtNPs have a higher affinity for 3,3',5,5'-tetramethylbenzidine (TMB) than other kinds of oxidase mimics. Furthermore, the TMB chromogenic reaction catalyzed by Ch-PtNPs is found to be much faster in an acidic medium, thus adapting well to the optimal pH for acid phosphatase (ACP). Therefore, a novel colorimetric approach for ACP determination is developed for the first time, which is based on the Ch-PtNP-catalyzed oxidation of TMB, the inhibitory effect of ascorbic acid (AA) on the oxidase-like activity of Ch-PtNPs, and the ACP-catalyzed hydrolysis of AA 2-phosphate (AAP) into AA. The linear range for ACP is 0.25-2.5 U L and the limit of detection is measured to be 0.016 U L. This new colorimetric method is utilized to detect ACP in real biological samples and to screen ACP inhibitors. We believe that these new PtNPs, which exhibit high colloidal stability, excellent catalytic performance, good biocompatibility, simple preparation, and easy modification, can be promising candidates for a broad range of applications in optical sensing, environmental monitoring, clinical diagnosis, and drug discovery.
BackgroundThe preparation and biological applications of ultra-small graphene quantum dots (GQDs) with accurate-controlled size are of great significance.MethodsHere in, we report a novel procedure involving pyrolysis of trisodium citrate and subsequent ultrafiltration for fabricating monolayer GQDs with ultra-small lateral size (1.3±0.5 nm).ResultsThe GQDs exhibit blue photoluminescence with peak position independent of excitation wavelength. The quantum yield of GQDs is measured to be 3.6%, and the average fluorescence lifetime is 2.78 ns.ConclusionBecause of high stability and low toxicity, GQDs are demonstrated to be excellent bioimaging agents. The ultra-small GQDs can not only distribute in the cytoplasm but also penetrate into the nuclei. We ensure that this work will add a new dimension to the application of graphene materials for nanomedicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.