To protect the lacquer plates from the Nanhai No. 1 shipwreck from being corroded by microorganisms, a series of studies were conducted on the four water-stored samples. The water samples were collected from the vessel where the lacquerware was stored in June and December 2017. In our study, high-throughput sequencing was conducted to reveal predominant bacterial communities. Then, three different media were used to isolate the dominant bacteria, and the 16S rRNA genes were sequenced. Next, we tested the degradation activity of lignin and cellulose by the isolated bacterial strains. After being cultured on a medium containing carboxylmethylcellulose (CMC), almost all the isolated strains (except Microbacterium sp. NK-NH4, Ochrobactrum sp. NK-NH9, and Bacillus megaterium NK-NH10) showed the capacity for cellulose degradation. In addition, the lignin peroxidase (Lip) and laccase activity of the strains were shown by culturing the strains on one medium with azure and on another medium with Remazol brilliant blue. The results indicated that the Lip activity of all the strains was low, whereas the laccase activity of Microbacterium sp. NK-NH4, Bacillus tequilensis NK-NH5, Bacillus subtilis NK-NH6, Bacillus megaterium NK-NH10, and Bacillus velezensis NK-NH11 was relatively high. Finally, we tested the bacteriostatic efficacy of four biocides—Preventol® D7, BIT 20N, P91, and Euxyl® K100. We found that most strains were sensitive to D7 and 20N, while K100 had almost no impact.
To avoid the lacquerware of the Nanhai No. 1 shipwreck from being corroded by microorganisms and to improve the knowledge on microbial ecology of the wood lacquers, we conducted a series of tests on the two water samples storing the lacquerware and colonies on the surface of the lacquerware. The high-throughput sequencing detected dominant fungal communities. After that, the fungal strains were isolated and then identified by amplification of ITS- 18S rRNA. Then the activity of ligninolytic and cellulolytic enzymes was detected on potato dextrose agar (PDA) plates with 0.04% (v/v) guaiacol and carboxymethyl cellulose (CMC) agar plates. Finally, we tested the biocide susceptibility of these fungi. Penicillium chrysogenum (NK-NH3) and Fusarium solani (NK- NH1) were the dominant fungi in the sample collected in April 2016 and June 2017. What is more, both showed activity of ligninolytic and cellulolytic enzymes. Four biocidal products (Preventol® D7, P91, BIT 20N, and Euxyl® K100) inhibited the growth of the fungal species in vitro effectively. In further research, the microbial community and environmental parameters in the museum should be monitored to assess the changes in the community and to detect potential microbial outbreaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.