The present work reports on the synthesis of ZnO photocatalysts with different Co-doping levels via a facile one-step solution route. The structural and optical properties were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and UV-Vis diffuse reflectance spectra. The morphology of Co-doped ZnO depends on the reaction temperature and the amount of Co and counter-ions in the solution. Changes with the c-axis lattice constant and room temperature redshift show the replacement of Zn with Co ions without changing the wurtzite structure. Photocatalytic activities of Co-doped ZnO on the evolution of H2 and the degradation of methylene blue (MB) reduce with the doping of Co ions. As the close ionic radii of Co and Zn, the reducing photocatalytic activity is not due to the physical defects but the formation of deep bandgap energy levels. Photocurrent response experiments further prove the formation of the recombination centers. Mechanistic insights into Co-ZnO formation and performance regulation are essential for their structural adaptation for application in catalysis, energy storage, etc.
Herein we report the first example of the proton conductivity of an open-framework metal phosphate (NH3(CH2)3NH3)2–[Fe4(OH)3(HPO4)2(PO4)3]·4H2O under aqua-ammonia vapor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.