Functional mesoporous silica particles have attracted growing research interest for controlled drug delivery in targeted cancer therapy. For the purpose of efficient targeting tumor cells and reducing the adverse effect of antitumor drug doxorubicin (DOX), biocompatible and enzyme-responsive mesoporous silica nanoparticles (MSNs) with tumor specificity were desired. To construct these functional MSNs, the classic rotaxane structure formed between alkoxysilane tether and α-cyclodextrin (α-CD) was employed to anchor onto the orifices of MSNs as gatekeeper in this work. After subsequent modification by multifunctional peptide (azido-GFLGR7RGDS with tumor-targeting, membrane-penetrating, and cathepsin B-responsive functions) to stabilize the gatekeeper, the resulting functional MSNs showed a strong ability to load and seal DOX in their nanopores. When incubating these DOX-loaded MSNs with tumor and normal cells, the nanoparticles could efficiently employ their surface-encoded RGDS and continuous seven arginine (R7) sequences to target tumor cells, penetrate the cell membrane, and enter tumor cells. Because cathepsin B overexpressed in late endosomes and lysosomes of tumor cells could specifically hydrolyze GFLG sequences of the nanovalves, the DOX-loaded MSNs showed an "off-on" drug release behavior that ∼80% loaded DOX could be released within 24 h and thus showed a high rate of apoptosis. Furthermore, in vitro cellular experiments indicated that DOX-loaded MSNs (DOX@MSN-GFLGR7RGDS/α-CD) had high growth inhibition toward αvβ3-positive HeLa cancerous cells. The research might offer a practical way for designing the tumor-targeted and enzyme-induced drug delivery system for cancer therapy.
To integrate treatments of photothermal therapy, photodynamic therapy (PDT), and chemotherapy, this study reports on a multifunctional nanocomposite based on mesoporous silica‐coated gold nanorod for high‐performance oncotherapy. Gold nanorod core is used as the hyperthermal agent and mesoporous silica shell is used as the reservoir of photosensitizer (Al(III) phthalocyanine chloride tetrasulfonic acid, AlPcS4). The mesoporous silica shell is modified with β‐cyclodextrin (β‐CD) gatekeeper via redox‐cleavable Pt(IV) complex for controlled drug release. Furthermore, tumor targeting ligand (lactobionic acid, LA) and long‐circulating poly(ethylene glycol) chain are introduced via host–guest interaction. It is found that the nanocomposite can specifically target to hepatoma cells by virtue of the LA targeting moiety. Due to the abundant existence of reducing agents within tumor cells, β‐CD can be removed by reducing the Pt(IV) complex to active cisplatin drug for chemotherapy, along with the releasing of entrapped AlPcS4 for effective PDT. As confirmed by in vitro and in vivo studies, the nanocomposite exhibits an obvious near‐infrared induced thermal effect, which significantly improves the PDT and chemotherapy efficiency, resulting in a superadditive therapeutic effect. This collaborative strategy paves the way toward high‐performance nanotherapeutics with a superior antitumor efficacy and much reduced side effects.
Surface modification of nanomaterials is essential for their biomedical applications owing to their passive immune clearance and damage to reticuloendothelial systems. Recently, a cell membrane-coating technology has been proposed as an ideal approach to modify nanomaterials owing to its facile functionalized process and good biocompatibility for improving performances of synthetic nanomaterials. Here, recent advances of cell membrane-coated nanomaterials are reviewed based on the main biological functions of the cell membrane in living cells. An overview of the cell membrane is introduced to understand its functions and potential applications. Then, the applications of cell membrane-coated nanomaterials based on the functions of the cell membrane are summarized, including physical barrier with selective permeability and cellular communication via information transmission and reception processes. Finally, perspectives of biomedical applications and challenges about cell membrane-coated nanomaterials are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.