Up to 50% of stroke survivors have persistent, severe upper extremity paresis even after receiving rehabilitation. Repetitive transcranial magnetic stimulation (rTMS) can augment the effects of rehabilitation by modulating corticomotor excitability, but the conventional approach of facilitating excitability of the ipsilesional primary motor cortex (iM1) fails to produce motor improvement in stroke survivors with severe loss of ipsilesional substrate. Instead, the undamaged, contralesional dorsal premotor cortex (cPMd) may be a more suitable target. CPMd can offer alternate, bi-hemispheric and ipsilateral connections in support of paretic limb movement. This pilot, randomized clinical trial seeks to investigate whether rTMS delivered to facilitate cPMd in conjunction with rehabilitation produces greater gains in motor function than conventional rTMS delivered to facilitate iM1 in conjunction with rehabilitation in severely impaired stroke survivors. Twenty-four chronic (≥6 months) stroke survivors with severe loss of ipsilesional substrate (defined by the absence of physiologic evidence of excitable residual pathways tested using TMS) will be included. Participants will be randomized to receive rTMS to facilitate cPMd or iM1 in conjunction with task-oriented upper limb rehabilitation given for 2 sessions/week for 6 weeks. Assessments of primary outcome related to motor impairment (upper extremity Fugl-Meyer [UEFM]), motor function, neurophysiology, and functional neuroimaging will be made at baseline and at 6-week end-of-treatment. An additional assessment of motor outcomes will be repeated at 3-month follow-up to evaluate retention. The primary endpoint is 6-week change in UEFM. This pilot trial will provide preliminary evidence on the effects and mechanisms associated with facilitating intact cPMd in chronic severe stroke survivors. The trial is registered on clinicaltrials.gov, NCT03868410.
The purpose of this study is to assess and compare corticospinal excitability in the upper and lower trapezius and serratus anterior muscles in participants with and without shoulder impingement syndrome (SIS). Fourteen participants with SIS, and 14 without SIS were recruited through convenient sampling in this study. Transcranial magnetic stimulation assessment of the scapular muscles was performed while the participants were holding their arm at 90 degrees scaption. The motor-evoked potential (MEP), active motor threshold (AMT), latency of MEP, cortical silent period (CSP), activated area and center of gravity (COG) of cortical mapping were compared between groups using the Mann-Whitney U tests. The SIS group demonstrated following significances, higher AMTs of the lower trapezius (SIS: 0.60 ± 0.06; Comparison: 0.54 ± 0.07, p = 0.028) and the serratus anterior (SIS: 0.59 ± 0.04; Comparison: 0.54 ± 0.06, p = 0.022), longer CSP of the lower trapezius (SIS: 62.23 ± 22.87 ms; Comparison: 45.22 ± 14.64 ms, p = 0.019), and posteriorly shifted COG in the upper trapezius (SIS: 1.88 ± 1.06; Comparison: 2.76 ± 1.55, p = 0.048) and the serratus anterior (SIS: 2.13 ± 1.02; Comparison: 3.12 ± 1.88, p = 0.043), than the control group. In conclusion, participants with SIS demonstrated different organization of the corticospinal system, including decreased excitability, increased inhibition, and shift in motor representation of the scapular muscles.
Kinesio taping has been used to improve sensorimotor control performance. In this study, we explored the effect of Kinesio taping with different tensions on hand force control, joint proprioception, reaction time and brain activity. This was an observational study with a single-group, repeated-measures design. Twenty-four healthy participants (12 women) randomly assigned to three wrist/finger flexor taping conditions: (1) taping with 20% additional tension (taping20), (2) taping with neutral tension (tapingN), and (3) without taping (control). Grip force and wrist joint proprioceptive senses, reaction time, and force control performance were recorded in each of the taping conditions. An EEG of the bilateral sensorimotor cortex and an EMG of the right finger flexors were recorded to investigate changes in brain activity and functional connectivity between the brain and muscles (coherence). Our results indicated that taping significantly improved the joint position sense for participants with an error >3° (control vs. tapingN vs. taping20: 4.1° ± 1.04° vs. 2.6° ± 0.97° vs. 2.1° ± 0.91°; p = 0.001). In addition, Kinesio taping-induced improvements in force control were moderately correlated with decreases in the EEG beta band power. In conclusion, Kinesio taping could improve the joint proprioceptive sense, and taping-induced improvement in force control is likely due to neural desynchronization in motor cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.