The simultaneous construction of two different chiralities via a simple operation poses considerable challenge. Herein a cationic gold-catalyzed asymmetric hydroarylation of ortho-alkynylaryl ferrocenes derivatives is developed, which enable the simultaneous construction of axial and planar chirality. The here identified TY-Phos derived gold complex is responsible for the high yield, good diastereoselectivity (>20:1 dr), high enantioselectivities (up to 99% ee) and mild conditions. The catalyst system also shows potential application in the synthesis of chiral biaryl compounds. The cause of high enantioselectivity of this hydroarylation is investigated with density functional theory caculation.
The asymmetric denitrogenative cycloaddition has emerged as a powerful tool to build chiral aza-heterocyles. However, only one example of asymmetric denitrogenative cycloaddition of benzotriazole with unsaturated hydrocarbons has been explored so far, because the ring-opening of benzotriazole to generate α-imino metal carbenoid species is a thermodynamically unfavorable process. We herein report an efficient asymmetric denitrogenative cycloaddition of benzotriazoles with cyclic and acyclic 1,3-dienes enabled by Pd and chiral sulfonamide phosphine ligand. A variety of substituted hexahydrocarbazoles and indolines were delivered in good yields with high ee values. Interestingly, a pair of enantiomers could be obtained with the use of Xu1 and PC2 with the same absolute configuration. The synthetic utilities of the optically active hexahydrocarbazoles were also showcased.
Asymmetric cycloaddition reactions are the most powerful tool to the expeditious construction of enantioenriched cyclic motifs in organic chemistry. In sharp contrast to welldeveloped cycloaddition reactions via the palladium-trimethylenemethane (Pd-TMM) intermediate, hetero (3 + 2) cycloadditions of the heteroallyl cations remain rare, largely due to their thermally forbidden nature. To the best of our knowledge, there is no example of asymmetric version leading to enantioenriched heterocycles reported so far. Herein we enabled the first example of catalytic asymmetric (3 + 2) cycloaddition of electrophilic palladium-heteroallyl zwitterion intermediate (Pd-OTMM or Pd-NTMM) with cyclic or acyclic 1,3-dienes via a pathway terminated with C−N or C−O bond formation, delivering the highly substituted or fused pyrrolidine and tetrahydrofuran rings in high yields with excellent regio-, diastereo-, and enantioselectivity. Engineering the PC-Phos, one of the chiral sulfinamide phosphine (Sadphos) type ligands, by introducing the di-tert-butyl or/and 3,5-difluorophenyl group is a vital component in achieving excellent catalytic reactivity and enantioselectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.