Gold nanoparticles with various positive charge densities and hydrophobicities induce cellular oxidative stress differently and sensitize cancer cells to paclitaxel.
Self‐sustainable energy generation represents a new frontier to significantly extend the lifetime and effectiveness of implantable biomedical devices. In this work, a piezoelectric energy harvester design is employed to utilize the bending of the lead of a cardiac pacemaker or defibrillator for generating electrical energy with minimal risk of interfering with cardiovascular functions. The proposed energy harvester combines flexible porous polyvinylidene fluoride–trifluoroethylene thin film with a buckled beam array design for potentially harvesting energy from cardiac motion. Systematic in vitro experimental evaluations are performed by considering complex parameters in practical implementations. Under various mechanical inputs and boundary conditions, the maximum electrical output of this energy harvester yields an open circuit voltage (peak to peak) of 4.5 V and a short circuit current (peak to peak) of 200 nA, and that energy is sufficient to self‐power a typical pacemaker for 1 d. A peak power output of 49 nW is delivered at an optimal resistor load of 50 MΩ. The scalability of the design is also discussed, and the reported results demonstrate the energy harvester's capability of providing significant electrical energy directly from the motions of pacemaker leads, suggesting a paradigm for biomedical energy harvesting in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.