Concerning the development of cavitation in a centrifugal pump, numerical simulations and experimental investigations have been carried out in a closed hydraulic test rig. The internal flow characteristics and pressure pulsation at pump inlet and outlet have been analyzed during the process of cavitation development. The results of the research reveal the occurrence and development of cavitation in the centrifugal pump which has been confirmed through experiments and numerical simulation. The degree of pump cavitation could be monitored through pump inlet and outlet pressure pulsation. Compared with pump outlet pressure pulsation, pump inlet pressure pulsation is more sensitive to the change of cavitation. According to the results of the investigation, the typical frequency of pump inlet pressure pulsation could be regarded as around 30 Hz in the severe cavitation conditions. Meanwhile, the pump head dropped by 0.77% from noncavitation conditions which could be regarded as a symbol of incipient cavitation.
Cavitation is a major undesirable phenomenon for centrifugal pump because it can cause hydraulic performance deterioration, pump damage by pitting and material erosion, and structural vibration and noise. Cavitation can appear within the entire range of the operating conditions; therefore, it must be prevented by all means. Sensorless monitoring technology based on motor current signature analysis is non-intrusive and economic for monitoring motor-driven equipment. Thus, this technology is suitable for centrifugal pump systems. The motor current signature for centrifugal pump load at the cavitation condition is the basis of this technology. However, systematic research is lacking on sensorless monitoring technology based on motor current signature. As a result, the tentative exploration for motor current signature at cavitation load was conducted in this study. The results show that the stator current is still a sinusoidal alternating current strictly to the law of sine. Moreover, the root mean square of the current fluctuates because of different flow regimes in the cavitation progress and decreases because vapor density is smaller than water density when cavitation is fully formed. For the stator current spectrum, the noise level, noise distribution, rotation speed, and vane pass frequency components show features in the cavitation process. These indicator indexes change according to the stage of cavitation development. Thus, the motor current signature analysis is found to be a feasible and cost-effective method for the stages of cavitation condition.
Sensorless monitoring technology based on motor current signature analysis is a nonintrusive and economical technique to monitor motor-driven equipment. Sensorless monitoring technology can be applied to a centrifugal pump system. This technology is also based on the motor current signature of centrifugal pump load; however, systematic research regarding motor current signature in overall normal operation points which is the applied basic for sensorless monitoring technology has been rarely performed. As such, we partially examined the motor current signature of a centrifugal pump load by experimental observation, theoretical analysis, and numerical simulation. Results show that stator current is a sinusoidal alternating current that strictly follows sine law associated with the cycle of the fundamental frequency of supply power. The trend of the root mean square and peak–peak of current is the same as flow–shaft power characteristics; hence, this trend could be used as indicator of the pump operational point monitor. The frequency characteristics of a centrifugal pump, such as blade passing frequency, rotation frequency, and broadband noise, could be reflected as sidebands around the fundamental frequency. The stator current spectrum is composed of fundamental frequency component, harmonics component, and noise. The fundamental frequency component is directly related to the pump load in which changes associated with the law of fundamental frequency component are relatively similar to flow–shaft power characteristics. Harmonics component and noise are caused by load fluctuation in which the amount of energy of these two components exhibits a lower value at the preferred operation point. By contrast, the amount of energy likely increases when pump operation is at an unstable operation point. These results further indicate that motor current signature analysis is a feasible and cost-effective method to monitor centrifugal pump operation status. Therefore, motor current signature analysis can be applied to monitor-related flow phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.