To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.
Oil palm is one of the most productive oil producing crops and can store up to 90% oil in its fruit mesocarp. However, the biosynthetic regulation and drivers of palm mesocarp development are still not well understood. Multiplatform metabolomics technology was used to profile palm metabolites during six critical stages of fruit development in order to better understand lipid biosynthesis. Significantly higher amino acid levels were observed in palm mesocarp preceding lipid biosynthesis. Nucleosides were found to be in high concentration during lipid biosynthesis, whereas levels of metabolites involved in the tricarboxylic acid cycle were more concentrated during early fruit development. Apart from insights into the regulation of metabolites during fruit development in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programs.
Sterilisation in palm oil mills is considered a pre-treatment process as it affects stripping efficiency and oil quality. Although sterilisation technology has been well-established in the palm oil milling industry, the roles and principles of sterilisation, particularly related to the chemical changes in fruits and stalks occurring during the process, have been rarely reported. The review begins with the background literature on the biochemical properties of the FFBs, such as the compositions of binding carbohydrates and the phenomena of natural fruit detachment. Followed by the harvesting practice to understand the type of FFBs supplied to the industry. In addition, a comparison of the well-established conventional and alternative sterilisation technologies and sterilisation functions is critically reviewed and assessed. Establishing the current sterilisation process initiatives to address the natural fruit’s separation more efficiently in palm oil mills is important. Particularly visualise sterilisation as a breakup of specific binding carbohydrates that leads to strippability. It will provide a further understanding of the sterilisation mechanism, which would benefit the palm oil miller in optimising the processing of fresh fruit bunches. The information provided in this review is necessary to mitigate the percentage of unstripped bunches and reduce the oil losses and ultimately enhance the oil extraction rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.