The effects of bioavailability and metabolic transformation on the biological activities of daidzein are relatively unknown. The effects of daidzein, dihydrodaidzein, and equol at physiologically relevant concentrations on the production of leukotriene B4 and F2-isoprostanes, and myeloperoxidase enzyme activity in freshly isolated human neutrophils were examined. Equol, at physiological concentrations, inhibited leukotriene B4 production (IC50-200 nmol/L) in human neutrophils significantly more than daidzein and dihydrodaidzein (IC50 values >1000 nmol/L). Daidzein, dihydrodaidzein, and equol did not affect the enzymatic hydrolysis of leukotriene A4 to leukotriene B4, suggesting that they exerted their inhibitory effects on the 5-lipoxygenase activity. Daidzein (IC50 = 600 nmol/L) protected against free radical peroxidation of arachidonic acid significantly more than did equol and dihydrodaidzein (IC50 values >1000 nmol/L). Equol also showed significantly greater inhibition of myeloperoxidase activity (IC50 = 450 nmol/L) when compared to daidzein and dihydrodaidzein. Equol accumulated within the human neutrophils at significantly higher concentrations than daidzein and dihydrodaidzein after incubation with the three compounds at physiologically relevant concentrations. Neutrophils were able to accumulate intracellular daidzein, dihydrodaidzein, and equol up to a concentration of ∼600 nmol/L. Our results provide in vitro evidence that the biological activities of daidzein are profoundly influenced by bioavailability and metabolic transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.