The current coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has inflicted a serious health crisis globally. This virus is associated with a spectrum of respiratory illness ranging from asymptomatic, mild to severe pneumonia, and acute respiratory distress syndrome. Accumulating evidence supports that COVID-19 is not merely a respiratory illness per se, but potentially affects other organ systems including the placenta. SARS-CoV-2 gains access to human cells via angiotensin-converting enzyme 2 (ACE-2). The abundance of ACE-2 on the placental cell surface, especially the syncytiotrophoblasts, could potentially contribute to vertical transplacental transmission to the fetus following maternal COVID-19 infection. Intriguingly, despite the placentas being tested positive for SARS-CoV-2, there are very few newborns that manifest virus-induced diseases. The protective effects of the placental barrier to viral infection, limiting the spread of the virus to newborn infants, remain a mystery. The detrimental role of COVID-19 in pregnancies is largely debatable, although COVID-19 maternal infection has been implicated in unfavorable pregnancy outcomes. In this review, we summarize the pathological features manifested in placenta due to COVID-19 maternal infection that have been previously reported, and relate them to the possible disease manifestation. The potential mechanistic pathways associated with transplacental viral transmission and adverse pregnancy outcomes are also discussed.
Treatment for non-alcoholic fatty liver disease (NAFLD) currently consists of lifestyle modifications such as a low-fat diet, weight loss, and exercise. The gut microbiota forms part of the gut–liver axis and serves as a potential target for NAFLD treatment. We investigated the effect of probiotics on hepatic steatosis, fibrosis, and biochemical blood tests in patients with NAFLD. At the small intestinal mucosal level, we examined the effect of probiotics on the expression of CD4+ and CD8+ T lymphocytes, as well as the tight junction protein zona occluden-1 (ZO-1). This was a randomized, double-blind, placebo-controlled trial involving ultrasound-diagnosed NAFLD patients (n = 39) who were supplemented with either a probiotics sachet (MCP® BCMC® strains) or a placebo for a total of 6 months. Multi-strain probiotics (MCP® BCMC® strains) containing six different Lactobacillus and Bifidobacterium species at a concentration of 30 billion CFU were used. There were no significant changes at the end of the study in terms of hepatic steatosis (probiotics: −21.70 ± 42.6 dB/m, p = 0.052 vs. placebo: ZZ.10.72 ± 46.6 dB/m, p = 0.29) and fibrosis levels (probiotics: −0.25 ± 1.77 kPa, p = 0.55 vs. placebo: −0.62 ± 2.37 kPa, p = 0.23) as measured by transient elastography. Likewise, no significant changes were found for both groups for the following parameters: LiverFAST analysis (steatosis, fibrosis and inflammation scores), alanine aminotransferase, total cholesterol, triglycerides, and fasting glucose. In the immunohistochemistry (IHC) analysis, no significant expression changes were seen for CD4+ T lymphocytes in either group (probiotics: −0.33 ± 1.67, p = 0.35 vs. placebo: 0.35 ± 3.25, p = 0.63). However, significant reductions in the expression of CD8+ T lymphocytes (−7.0 ± 13.73, p = 0.04) and ZO-1 (Z-score = −2.86, p = 0.04) were found in the placebo group, but no significant changes in the probiotics group. In this pilot study, the use of probiotics did not result in any significant clinical improvement in NAFLD patients. However, at the microenvironment level (i.e., the small intestinal mucosa), probiotics seemed to be able to stabilize the mucosal immune function and to protect NAFLD patients against increased intestinal permeability. Therefore, probiotics might have a complementary role in treating NAFLD. Further studies with larger sample sizes, a longer duration, and different probiotic strains are needed to evaluate the real benefit of probiotics in NAFLD.
Background: Differentiating reactive mesothelial cells from metastatic carcinoma in effusion cytology is a challenging task. The application of at least 4 monoclonal antibodies including 2 epithelial markers (Ber-EP4, MOC-31, CEA, or B72.3) and 2 mesothelial markers (calretinin, WT-1, CK5/6, or HBME-1) are often useful in this distinction; however, it is not readily available in many resource-limited developing countries. Aberrant immunoexpression of enhancer of zeste homolog 2 (EZH2), a transcriptional repressor involved in cancer progression, is observed widely in various malignancy. In this study, we evaluate the diagnostic value of EZH2 as a single reliable immunomarker for malignancy in effusion samples. Methods: A total of 108 pleural, peritoneal, and pericardial effusions/washings diagnosed as unequivocally reactive (n = 41) and metastatic carcinoma (n = 67) by cytomorphology over 18 months were reviewed. Among the metastatic carcinoma cases, 54 were adenocarcinoma and others were squamous cell carcinoma (n = 1), carcinosarcoma (n = 1), and carcinoma of undefined histological subtypes (n = 11). Cell block sections were immunostained by EZH2 (Cell Marque, USA). The percentages of EZH2-immunolabeled cells over the total cells of interest were calculated. Receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cut-off score to define EZH2 immunopositivity. Results: A threshold of 8% EZH2-immunolabeled cells allows distinction between malignant and reactive mesothelial cells, with 95.5% sensitivity, 100% specificity, 100% positive predictive value, and 93.2% negative predictive value (p < 0.0001). The area under the curve was 0.988. Conclusion: EZH2 is a promising diagnostic biomarker for malignancy in effusion cytology which is inexpensive yet trustworthy and could potentially be used routinely in countries under considerable economic constraints.
Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.