This paper reveals a data bias issue that can severely affect the performance while conducting a machine learning model for malicious URL detection. We describe how such bias can be identified using interpretable machine learning techniques, and further argue that such biases naturally exist in the real world security data for training a classification model. We then propose a debiased training strategy that can be applied to most deep-learning based models to alleviate the negative effects from the biased features. The solution is based on the technique of self-supervised adversarial training to train deep neural networks learning invariant embedding from biased data. We conduct a wide range of experiments to demonstrate that the proposed strategy can lead to significantly better generalization capability for both CNN-based and RNN-based detection models. CCS CONCEPTS• Security and privacy → Artificial immune systems; • Computing methodologies → Machine learning algorithms; Neural networks; Learning latent representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.