The identification of CTL epitopes from tumor antigens is very important for the development of peptide-based, cancerspecific immunotherapy. Heparanase is broadly expressed in various advanced tumors and can serve as a universal tumorassociated antigen. Although several epitopes of heparanase antigen are known in humans, the corresponding knowledge in mice is still rather limited. The present study was designed to predict and identify the CTL epitopes in the mouse heparanase protein. For this purpose, H-2K b -restricted CTL epitopes were identified by using the following four-step procedure: (a) a computer-based epitope prediction from the amino acid sequence of mouse heparanase, (b) a peptidebinding assay to determine the affinity of the predicted epitopes with the H-2K b molecule, (c) the testing of the induction of CTLs toward various carcinoma cells expressing heparanase antigens and H-2K b , and (d) the induction of immunoprotection and immunotherapy in vivo. The results showed that, of the tested peptides, effectors induced by peptides of mouse heparanase at residue positions 398 to 405 (LSLLFKKL; mHpa398) and 519 to 526 (FSYGFFVI; mHpa519) lysed three kinds of carcinoma cells expressing both heparanase and H-2K b (B16 melanoma cells, EL-4 lymphoma cells, and Lewis lung cancer cells). In vivo experiments indicated that mHpa398 and mHpa519 peptides offered the possibility of not only immunizing against tumors but also treating tumorbearing hosts successfully. Our results suggest that the mHpa398 and mHpa519 peptides are novel H-2K b -restricted CTL epitopes capable of inducing heparanase-specific CTLs in vitro and in vivo. These epitopes may serve as valuable tools for the preclinical evaluation of vaccination strategies. [Cancer Res 2008;68(5):1529-37]
Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with tumors. Heparanase (Hpa) is broadly expressed in various advanced tumors and seems to be an attractive new tumor-associated antigen. The present study was designed to predict and identify HLA-A2-restricted cytotoxic T lymphocyte (CTL) epitopes in the protein of human Hpa. For this purpose, HLA-A2-restricted CTL epitopes were identified using the following four-step procedure: 1) a computer-based epitope prediction from the amino acid sequence of human Hpa, 2) a peptide-binding assay to determine the affinity of the predicted protein with the HLA-A2 molecule, 3) stimulation of the primary T-cell response against the predicted peptides in vitro, and 4) testing of the induced CTLs toward different kinds of carcinoma cells expressing Hpa antigens and/or HLA-A2. The results demonstrated that, of the tested peptides, effectors induced by peptides of human Hpa containing residues 525-533 (PAFSYSFFV, Hpa525), 277-285 (KMLKSFLKA, Hpa277), and 405-413 (WLSLLFKKL, Hpa405) could effectively lyse various tumor cell lines that were Hpa-positive and HLA-A2-matched. We also found that these peptide-specific CTLs could not lyse autologous lymphocytes with low Hpa activity. Further study revealed that Hpa525, Hpa277, and Hpa405 peptides increased the frequency of IFN-gamma-producing T cells compared to a negative peptide. Our results suggest that Hpa525, Hpa277, and Hpa405 peptides are new HLA-A2-restricted CTL epitopes capable of inducing Hpa-specific CTLs in vitro. Because Hpa is expressed in most advanced malignant tumors, Hpa525, Hpa277, and Hpa405 peptide-based vaccines may be useful for the immunotherapy for patients with advanced tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.