The lithium/sulfur cell with high theoretical capacity has drawn much attention recently because of its high energy density and low cost. However, the shuttle effect caused by polysulfide dissolution and migration, and the destruction of cathode particles due to large volume expansion during lithiation, are the key challenges. Here, the novel graphene oxide (GO) wrapping sulfur‐MnO2 (S/MnO2/GO) nanocomposite is prepared with improved rate capability and cyclic performance. The inner layer is the protective layer of MnO2 shell, which accommodates the volume expansion of sulfur and minimizes polysulfides dissolution. The outer layer of fabricated graphene oxide is the stable layer, which gives further protection in suppressing the polysulfides dissolution in case the MnO2 shells crack. The cell with S/MnO2/GO electrode delivers 1378 mAh g−1 initial discharge capacity at the current density of 2 C and remains 818 mAh g−1 over 1000 cycles, which exhibits the very low fading rate of 0.04 % per cycle. Moreover, the S/MnO2/GO nanocomposites can be easily fabricated with our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.