The potential of 23 superhalogen anions of halogen-free structures as high-performance electrolytes of Li-ion batteries is theoretically explored here. According to high-level ab initio results at the CCSD(T) level, eight candidates, obeying the Wade-Mingos rule, should be capable of forming electrolytes, which are better than the currently used commercial products. When comparing different methods, MP2 was found to be in good agreement with CCSD(T) in the calculation of ΔE and ΔE, which are parameters describing the performance of potential electrolytes. Thus, MP2 represents a good choice for such calculations, particularly for large potential electrolyte systems wherein CCSD(T) calculations are actually impractical. The five functionals selected here (ωB97XD, B2GP-PLYP, B2K-PLYP, B2T-PLYP and B3LYP) are also capable of reproducing the variational trends of the relative values of different structures at the CCSD(T) level. However, the actual DFT values of ΔE are usually different from those of CCSD(T) by more than 1 eV. These significant deviations may be a problem when accurate ΔE values are required.
Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS 2 AIP Advances 5, 057143 (2015) The superhalogen properties of polynuclear structures without halogen ligand are theoretically explored here for several [M 2 (CN) 5 ] −1 (M= Ca, Be) clusters. At CCSD(T) level, these clusters have been confirmed to be superhalogens due to their high vertical electron detachment energies (VDE). The largest one is 9.70 eV for [Ca 2 (CN) 5 ] −1 which is even higher than those of corresponding traditional structures based on fluorine or chlorine ligands. Therefore the superhalogens stronger than the traditional halogen-based structures could be realized by ligands other than halogen atoms. Compared with CCSD(T), outer valence Green's function (OVGF) method either overestimates or underestimates the VDEs for different structures while MP2 results are generally consistent in the aspect of relative values. The extra electrons of the highest VDE anions here aggregate on the bridging CN units with non-negligible distribution occurring on other CN units too. These two features lower both the potential and kinetic energies of the extra electron respectively and thus lead to high VDE. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to the detachment of cyanide ligand were also investigated. The sum of these results identifies the potential of polynuclear structures with pseudohalogen ligand as suitable candidates with enhanced superhalogens properties. C
An ab initio study of the superhalogen properties of eighteen binuclear double-bridged [Mg2 (CN)5 ](-1) clusters is reported herein by using various theoretical methods. High-level CCSD(T) results indicate that all the clusters possess strong superhalogen properties owing to their high vertical electron detachment energies (VDEs), which exceed 6.8 eV (highest: 8.15 eV). The outer valence Green's function method provides inaccurate relative VDE values; hence, this method is not suitable for this kind of polynuclear superhalogens. Both the HF and MP2 results are generally consistent with the CCSD(T) level regarding the relative VDE values and-especially interesting-the average values of the HF and MP2 VDEs are extremely close to the CCSD(T) results. The distributions of the extra electrons of the anions are mainly aggregated into the terminal CN units. These distributions are apparently different from those of previously reported triple-bridged isomers and may be the reason for the decreased VDE values of the clusters. In addition, comparisons of the VDEs of binuclear and mononuclear superhalogens as well as studies of the thermodynamic stabilities with respect to the detachment of various CN(-1) ligands are also performed. These results confirm that polynuclear structures with pseudohalogen ligands can be considered as probable new superhalogens with enhanced properties.
A systematic density functional theory study including 17 exchange-correlation functionals was performed on different types of superhalogens with high level coupled-cluster single double including perturbative triple excitations (CCSD(T)) results as the reference. The superhalogens selected here cover the ranges from mononuclear to polynuclear structures and from structures with halogen-atom ligands to those with non-halogen ligands, e.g., [MgX3](-), [Mg2X5](-), and [Mg3X7](-) (X = F, Cl, CN). It is clearly indicated that three double-hybrid functionals B2T-PLYP, B2GP-PLYP, B2K-PLYP as well as the range-separated hybrid functional ωB97X are capable of providing results which approach the accuracy at the CCSD(T) level. The basis set effect is usually moderate and, in most cases, it is enough to utilize the basis set of triple-ξ quality, e.g., Def2-TZVP. In addition, the results of the HF and MP2 method are also acceptable here, especially for polynuclear superhalogens where CCSD(T) is probably unpractical.
The regulation of the electronic properties of organic molecules induced by polynuclear superhalogens is theoretically explored here for sixteen composite structures. It is clearly indicated by the higher vertical electron detachment energy (VDE) that polynuclear superhalogens are more effective in regulating the electronic properties than mononuclear structures. However, this enhanced regulation is not only determined by superhalogens themselves but also related to the distribution of the extra electron of the final composites. The composites, in which the extra electron is mainly aggregated into the superhalogen moiety, will possess higher VDE values, as reported in the case of C1', 7.12 eV at the CCSD(T) level. This is probably due to the fact that, compared with organic molecules, superhalogens possess stronger attraction towards the extra electron and thus should lead to lower energies of the extra electrons and to higher VDE values eventually. Compared with CCSD(T), the Outer Valence Green's Function (OVGF) method fails completely for composite structures containing Cl atoms, while MP2 results are generally consistent in terms of the relative order of VDEs. Actually if the extra electron distribution of the systems could be approximated by the HOMO, the results at the OVGF level will be consistent with the CCSD(T) results. Conversely, the difference in VDEs between OVGF and CCSD(T) is significantly large. Besides superhalogen properties, the structures, relative stabilities and thermodynamic stabilities with respect to various fragmentation channels were also investigated for all the composite structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.