Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high-time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.
Organic aerosol (OA) data acquired by the Aerosol Mass Spectrometer (AMS) in 37 field campaigns were deconvolved into hydrocarbon‐like OA (HOA) and several types of oxygenated OA (OOA) components. HOA has been linked to primary combustion emissions (mainly from fossil fuel) and other primary sources such as meat cooking. OOA is ubiquitous in various atmospheric environments, on average accounting for 64%, 83% and 95% of the total OA in urban, urban downwind, and rural/remote sites, respectively. A case study analysis of a rural site shows that the OOA concentration is much greater than the advected HOA, indicating that HOA oxidation is not an important source of OOA, and that OOA increases are mainly due to SOA. Most global models lack an explicit representation of SOA which may lead to significant biases in the magnitude, spatial and temporal distributions of OA, and in aerosol hygroscopic properties.
Recent work has shown that aqueous-phase reactions of phenolic compounds – phenol (C<sub>6</sub>H<sub>6</sub>O), guaiacol (C<sub>7</sub>H<sub>8</sub>O<sub>2</sub>), and syringol (C<sub>8</sub>H<sub>10</sub>O<sub>3</sub>) – can form secondary organic aerosol (SOA) at high yields. Here we examine the chemical characteristics of this SOA and its formation mechanisms using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS), an Ion Chromatography system (IC), and a Total Organic Carbon (TOC) analyzer. The phenolic SOA are highly oxygenated with oxygen-to-carbon (O/C) ratios in the range of 0.80–1.06 and carbon oxidation states (=2×O/C-H/C) between −0.14 and +0.47. The organic mass-to-carbon (OM/OC) ratios determined by the HR-AMS (=2.21–2.55) agree well with values determined based on the SOA mass measured gravimetrically and the OC mass from the TOC analyzer. Both the O/C and OM/OC ratios of the phenolic SOA are similar to the values observed for ambient low-volatility oxygenated/secondary OA (LV-OOA). Oxalate is a minor, but ubiquitous, component of the SOA formed from all three phenolic precursors, accounting for 1.4−5.2% of the SOA mass, with generally higher yields in experiments with H<sub>2</sub>O<sub>2</sub> added as an OH source compared to without. The AMS spectra show evidence for the formation of syringol and guaiacol dimers and higher oligomers via C-C and C-O coupling of phenoxyl radicals, which are formed through oxidation pathways such as abstraction of the phenolic hydrogen atom or OH addition to the aromatic ring. This latter pathway leads to hydroxylation of the aromatic ring, which is one mechanism that increases the degree of oxidation of the SOA products. Compared to direct photochemical reactions of the phenols, OH-initiated reactions favor the formation of smaller oxidation products but less dimers or higher oligomers. Two unique and prominent ions in the syringol and guaiacol SOA spectra, <i>m/z</i> 306 (C<sub>16</sub>H<sub>18</sub>O<sub>6</sub><sup>+</sup>) and <i>m/z</i> 246 (C<sub>14</sub>H<sub>14</sub>O<sub>4</sub><sup>+</sup>), respectively, are observed in ambient aerosols significantly influenced by wood combustion and fog processing. Our results indicate that cloud and fog processing of phenolic compounds, especially in areas with active biomass burning, might represent an important pathway for the formation of low-volatility and highly oxygenated organic species, which would remain in the particle phase after fog/cloud evaporation and affect the chemical and optical properties of atmospheric particles
Abstract. Recent work has shown that aqueous-phase reactions of phenolic compounds – phenol (C6H6O), guaiacol (C7H8O2), and syringol (C8H10O3) – can form secondary organic aerosol (SOA) at high yields. Here we examine the chemical characteristics of this SOA and its formation mechanisms using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS), an Ion Chromatograph (IC), and a Total Organic Carbon (TOC) analyzer. The phenolic SOA are highly oxygenated with oxygen-to-carbon (O/C) ratios in the range of 0.80–1.06 and carbon oxidation states (=2×O/C–H/C) between −0.14 and +0.47. The organic mass-to-carbon (OM/OC) ratios determined by the HR-AMS (=2.21–2.55) agree well with values determined based on the SOA mass measured gravimetrically and the OC mass from the TOC analyzer. Both the O/C and OM/OC ratios of the phenolic SOA are similar to the values observed for ambient low-volatility oxygenated/secondary OA (LV-OOA). Oxalate is a minor, but ubiquitous, component of the SOA formed from all three phenolic precursors, accounting for 1.4–5.2% of the SOA mass, with generally higher yields in experiments with H2O2 added as an ·OH source compared to without. The AMS spectra show evidence for the formation of syringol and guaiacol dimers and higher oligomers via C–C and C–O coupling of phenoxyl radicals, which are formed through oxidation pathways such as abstraction of the phenolic hydrogen atom or ·OH addition to the aromatic ring. This latter pathway leads to hydroxylation of the aromatic ring, which is one mechanism that increases the degree of oxidation of the SOA products. Compared to direct photochemical reactions of the phenols, ·OH-initiated reactions favor the formation of smaller oxidation products but less dimers or higher oligomers. Two unique and prominent ions in the syringol and guaiacol SOA spectra, m/z 306 (C16H18O6+) and m/z 246 (C14H14O4+), respectively, are observed in ambient aerosols significantly influenced by wood combustion and fog processing. Our results indicate that cloud and fog processing of phenolic compounds, especially in areas with active biomass burning, might represent an important pathway for the formation of low-volatility and highly oxygenated organic species, which would remain in particle phase after fog/cloud evaporation and affect the hygroscopicity and radiative impacts of ambient OA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.