Snake robotics is an important research topic with a wide range of applications, including inspection in confined spaces, search-and-rescue, and disaster response. Snake robots are well-suited to these applications because of their versatility and adaptability to unstructured and constrained environments. In this paper, we introduce a soft pneumatic robotic snake that can imitate the capabilities of biological snakes, its soft body can provide flexibility and adaptability to the environment. This paper combines soft mobile robot modeling, proprioceptive feedback control, and motion planning to pave the way for functional soft robotic snake autonomy. We propose a pressure-operated soft robotic snake with a high degree of modularity that makes use of customized embedded flexible curvature sensing. On this platform, we introduce the use of iterative learning control using feedback from the on-board curvature sensors to enable the snake to automatically correct its gait for superior locomotion. We also present a motion planning and trajectory tracking algorithm using an adaptive bounding box, which allows for efficient motion planning that still takes into account the kinematic state of the soft robotic snake. We test this algorithm experimentally, and demonstrate its performance in obstacle avoidance scenarios.
A novel two-phase method for two-dimensional (2D) direction-of-arrival (DOA) estimation with L-shaped array based on decoupled atomic norm minimization (DANM) is proposed in this paper. In the first phase, given the sample crosscorrelation matrix, the gridless DANM technique considering the noise and finite snapshots effects is employed to exploit the structure and sparse properties of the crosscorrelation matrix. The resulting DANM-based algorithm not only enables the crosscorrelation matrix reconstruction (CCMR) but also reconstructs the covariance matrix of the L-shaped array. Hence, sequentially, in the second phase, the conventional 2D DOA estimators for the L-shaped array can be adopted for the angle estimation. With appropriate 2D DOA estimators, the resulting proposed algorithms can not only achieve better performance but also detect more source number, compared with conventional crosscorrelation-based DOA estimators. Moreover, the proposed method, termed CCMR-DANM, not only has blind characteristic that it does not require the prior information of source numbers but also is more efficient than the existing CCMR-based counterparts. Numerical simulations demonstrate the effectiveness and outperformance of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.