We design and fabricate an unbalanced Mach-Zehnder interferometer (MZI) via electron beam lithography and inductively coupled plasma etching on lithium niobate thin film. The single unbalanced MZI exhibits a maximum extinction ratio of 32.4 dB and a low extra loss of 1.14 dB at the telecommunication band. Furthermore, tunability of the unbalanced MZI by harnessing the thermo-optic and electro-optic effect is investigated, achieving a linear tuning efficiency of 42.8 pm/°C and 55.2 pm/V, respectively. The demonstrated structure has applications for sensing and filtering in photonic integrated circuits.
With the development of photonic integrated circuits and optical information processing on thin-film lithium niobate (TFLN), the realization of the TFLN-based polarization device is becoming more and more crucial. Here, we demonstrate a polarization modulator on the TFLN platform without polarization diversity. Without polarization manipulation elements, the device only composes a phase modulator and a two-dimensional grating coupler. The structure features small footprint and high fabrication tolerance. The device holds promise for polarization encoding telecommunication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.