a b s t r a c tMo-Cu/HZSM-5 catalysts for pine sawdust thermal conversion were prepared using an impregnation method. The Mo-Cu/HZSM-5 catalysts and HZSM-5 were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). All characterization results indicated that the introduction of CuO is beneficial to the dispersion of MoO 3 in the HZSM-5. Combined with the two-stage catalytic pyrolysis system, the Mo-Cu/HZSM-5 catalysts were used for pine sawdust thermal conversion. The products included gas, bio-oil and bio-char. The gas was analyzed by Gas chromatography (GC). Gas chromatography-mass spectrometry (GC-MS) was used to identify the compounds in bio-oils. The water content, higher heating value (HHV) and viscosity of bio-oils were measured. The HHV and elements of bio-char were determined. The results indicated that Mo(3%)-Cu(3%)/ HZSM-5 treatment yielded the highest amount of C 6 -C 12 hydrocarbons, showed a robust ability to convert methane in the gas to bio-oil, and displayed no significant difference in the properties of bio-char when compared to different treatments in the same pyrolysis conditions.
Upgrading pyrolysis oil by hydrodeoxygenation (HDO) is a promising route for the production of advanced biofuels. The proper reaction conditions and catalysts are important for the success of this process. Previously our research group investigated the ratio of Zn and Pd on the synergistic effect for HDO bio-oil upgrading. This present research focuses on determining the optimal 3 reaction conditions for HDO conversion of pyrolysis oil produced from pine sawdust. Temperatures of 150, 200 and 250 o C and hydrogen pressures of 1.38, 2.76 and 4.14 MPa were evaluated. Syngas, liquids and coke were the primary products evaluated. Syngas was characterized using a Gas chromatography (GC). The liquids were characterized using a Gas chromatography-mass spectrometry (GC-MS). Increasing reaction temperature resulted in increased coke yields. Treatment at 250 °C and 1.38 MPa resulted in the highest hydrocarbon content (6.06%). The treatment at 200 °C and 1.38 MPa produced the largest amounts of hydrocarbons in C 6-C 12 range (5.07%). The physicochemical characterizations further support the GCMS results. Syngas analysis revealed that higher hydrogen pressure leads to increased hydrogen consumption and results in more oxy-compounds conversion to hydrocarbons. The syngas analysis also supports the liquid analysis result.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.