In this study, three kinds of coatings, AlTiN, AlTiN–Ni, and AlTiN–Cu were deposited via the cathodic arc evaporation method. The microstructure, mechanical properties, oxidation resistance, and cutting behavior of these coatings were then investigated. The incorporation of Cu(Ni) into AlTiN eliminated its columnar structure and led to an increase in the growth defects of its macroparticles. The addition of Cu and Ni decreased the hardness of the coatings, their elastic moduli, and their friction coefficients. All of the AlTiN, AlTiN–Ni, and AlTiN–Cu coatings presented sufficient adhesion strength values. The oxidation resistance of these three coatings was determined to be in the following order: AlTiN > AlTiN–Ni > AlTiN–Cu. Titanium turning experiments indicated that the cutting force was reduced and the tool life was improved through doping with Cu(Ni) elements, dependent on cutting speed. The AlTiN–Ni coating showed the best performance at a high cutting speed, whereas the AlTiN–Cu coating was more successful at a lower cutting speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.