We demonstrate magnetic switching between two 360° domain wall vortex states in cobalt nanorings, which are candidate magnetic states for robust and low power magnetoresistive random access memory (MRAM) devices. These 360° domain wall (DW) or 'twisted onion' states can have clockwise or counterclockwise circulation, the two states for data storage. Reliable switching between the states is necessary for any realistic device. We accomplish this switching by applying a circular Oersted field created by passing current through a metal atomic force microscope tip placed at the center of the ring. After initializing in an onion state, we rotate the DWs to one side of the ring by passing a current through the center, and can switch between the two twisted states by reversing the current, causing the DWs to split and meet again on the opposite side of the ring. A larger current will annihilate the DWs and create a perfect vortex state in the rings.
Micromagnetic simulations of the vortex switching process of thin ferromagnetic rings under the application of a circular field, as if created from a current-carrying wire passing through the ring center, reveal that for rings with sub-micron dimensions and thicknesses on the order of the exchange length, the vortex to vortex switching process occurs through the nucleation and annihilation of multiple 360° domain walls (DWs). The DWs can be characterized by their circulation relative to the vortex circulation; the DWs form in pairs with opposite topological indices. The DW with the same circulation annihilates first, which has a smaller energy barrier to overcome before annihilating. The contributions from both the exchange energy and demagnetization energy must be considered to predict which DW will annihilate first. Either wall could be annihilated by offsetting the current toward the wall being targeted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.