Understanding the evolution of pore-fracture networks in coal during loading is of paramount importance for coalbed methane exploration. To shed light on these dynamic changes, this study undertook uniaxial compression experiments on coal samples collected from the eastern edge of the Ordos Basin, complemented by μ-CT scanning to obtain a 3D visualization of the crack network model. The compression process was divided into three stages, namely, micro-crack compaction, linear elasticity, and peak failure. An increase in stress resulted in greater concentration and unevenness in fractal dimensions, illustrating the propagation of initial cleats and micro-cracks in the dominant crack direction and the ensuing process of crack merging. These results provide valuable insights into the internal structure and behavior of coal under stress, informing more efficient strategies for coalbed methane extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.