Alternative lengthening of telomeres (ALT) is likely to be an important target for anticancer treatment as approximately 10% of cancers depend on this telomere maintenance mechanism for continued growth, and inhibition of ALT can cause cellular senescence. However, no ALT inhibitors have been developed for therapeutic use because of the lack of a suitable ALT activity assay and of known ALT-specific target molecules. Here we show that partially single-stranded telomeric (CCCTAA)(n) DNA circles (C-circles) are ALT specific. We provide an assay that is rapidly and linearly responsive to ALT activity and that is suitable for screening for ALT inhibitors. We detect C-circles in blood from ALT(+) osteosarcoma patients, suggesting that the C-circle assay (CC assay) may have clinical utility for diagnosis and management of ALT(+) tumors.
Ubiquitination is one of many known histone modifications that regulate gene expression. Here, we examine the Arabidopsis thaliana homologs of the yeast E2 and E3 enzymes responsible for H2B monoubiquitination (H2Bub1). Arabidopsis has two E3 homologs (HISTONE MONOUBIQUITINATION1 [HUB1] and HUB2) and three E2 homologs (UBIQUITIN CARRIER PROTEIN [UBC1] to UBC3). hub1 and hub2 mutants show the loss of H2Bub1 and early flowering. By contrast, single ubc1, ubc2, or ubc3 mutants show no flowering defect; only ubc1 ubc2 double mutants, and not double mutants with ubc3, show early flowering and H2Bub1 defects. This suggests that ubc1 and ubc2 are redundant, but ubc3 is not involved in flowering time regulation. Protein interaction analysis showed that HUB1 and HUB2 interact with each other and with UBC1 and UBC2, as well as self-associating. The expression of FLOWERING LOCUS C (FLC) and its homologs was repressed in hub1, hub2, and ubc1 ubc2 mutant plants. Association of H2Bub1 with the chromatin of FLC clade genes depended on UBC1,2 and HUB1,2, as did the dynamics of methylated histones H3K4me3 and H3K36me2. The monoubiquitination of H2B via UBC1,2 and HUB1,2 represents a novel form of histone modification that is involved in flowering time regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.