The commercial pure titanium plate was shot vertically by the projectile with a diameter of 7.62mm at impact velocities ranging from 782m/s to 825m/s. The microstructure around the crater of commercial pure titanium plate was analyzed by optical microscopy (OM) and electron backscatter diffraction (EBSD) methods. It was found that different microstructures were observed along the depth of cater. In upper region of the crater, grains were deformed and fragmented. Adiabatic shear bands (ASBs) were observed in the middle of the crater, and some ASBs were bifurcated. At the bottom of the crater, the grains were less deformed, and the deformation twins were formed. The microstructures in the center of adiabatic shear band were mainly consisted of the dynamic recrystallization grains and sub-grains. The microstructure in the transition region was elongated grains along the shear stress distribution.
The high strain rate deformation behavior of as-annealed and as-cold rolled pure titanium was inspected by Split Hopkinson Pressure Bar (SHPB). The effect of deformation structure on adiabatic shear behavior in pure titanium was analyzed from the aspect of dynamic mechanical response and microstructural evolution. It was found that the strong {0001} basal texture was formed in as-cold rolled pure titanium. There were Geometrically Necessary Boundaries (GNBs) with spacing of 0.6μm and Incidental Dislocation Boundaries (IDBs) with size of 80nm in one grain. The enhancement of adiabatic shear sensitivity in as-cold rolled titanium was attributed to the deformation induced dislocation boundaries. The core of adiabatic shear band (ASB) was full of fine equiaxed grains with average size of 0.4μm, which was induced by dynamic recrystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.