We report optical absorption imaging of ultracold neutral strontium plasmas. The ion absorption spectrum determined from the images is Doppler broadened and thus provides a quantitative measure of the ion kinetic energy. For the particular plasma conditions studied, ions heat rapidly as they equilibrate during the first 250 ns after plasma formation. Equilibration leaves ions on the border between the weakly coupled gaseous and strongly coupled liquid states. On a longer time scale of microseconds, pressure exerted by the trapped electron gas accelerates the ions radially.
Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.
We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma. DOI: 10.1103 There has been significant theoretical study of the equilibration of strongly coupled plasmas [6 -12], especially in the context of plasmas produced with high-intensity lasers. In addition to generating fundamental interest, this problem challenges computational resources and techniques. Experimental results have been lacking, however, because of the fast time scales involved and limited diagnostics.Ultracold neutral plasmas [13], produced by photoionizing clouds of laser-cooled and trapped atoms, are ideal for experimental studies. The equilibration of the plasma is relatively slow ( 100 ns) due to lower plasma density. Ultracold neutral plasmas also offer a high level of control and diagnostics. By varying laser intensities and wavelengths, it is possible to accurately set the initial density and energy of the system. Optical imaging [14] provides an in situ probe of plasma properties with excellent spatial, temporal, and spectral resolution.In this Letter, we explore ion equilibration during the first microsecond after the plasma is created. The density sets the time and the energy scale for equilibration, but electron screening effects are evident. Even when the number of electrons per Debye sphere is small, the equilibration temperature of the ions agrees with a model [15] that uses a Yukawa ion-ion potential.We also observed oscillations of the ion kinetic energy. For many years, this phenomenon has been the subject of intense study through analytic calculations [7] and simulations [6,[8][9][10][11][12]] of one-component strongly coupled plasmas, but it has not previously been observed experimentally. The oscillations and their damping reflect universal dynamics of a Coulomb system with spatial correlations.Details on laser cooling, plasma formation, and imaging are given in [14,16]. The experiment starts with strontium atoms that are cooled and trapped in a magneto-optical trap (MOT). The neutral atom cloud is characterized by a temperature of about 10 mK, 2 10 8 atoms, and a Gaussian density distribution. We vary the atom density by changing the MOT parameters, or by turning the MOT off and releasing the atoms in a ballistic expansion. Up to 30% of the neutral atoms are then ionized with one photon from the cooling laser and one photon from a pulsed dye laser. The ion density distribution equals the atom distribution at the time of photoionization and is given by n i r n 0i exp ÿr 2 =2 2 , with from 0.6 to 1 mm and n 0i from 2 10 9 to 1:4 10 10 cm ÿ3 . The electron density, n e r , closely follows ...
A high-storage efficiency and long-lived quantum memory for photons is an essential component in long-distance quantum communication and optical quantum computation. Here, we report a 78% storage efficiency of light pulses in a cold atomic medium based on the effect of electromagnetically induced transparency (EIT). At 50% storage efficiency, we obtain a fractional delay of 74, which is the best up-to-date record. The classical fidelity of the recalled pulse is better than 90% and nearly independent of the storage time, as confirmed by the direct measurement of phase evolution of the output light pulse with a beat-note interferometer. Such excellent phase coherence between the stored and recalled light pulses suggests that the current result may be readily applied to single photon wave packets. Our work significantly advances the technology of EIT-based optical memory and may find practical applications in long-distance quantum communication and optical quantum computation.PACS numbers: 42.50. Gy, 32.80.Qk Quantum memory [1][2][3][4][5][6][7][8] is essential for quantum information processing, including quantum communication [9][10][11] and quantum computation [12]. Using quantum repeaters will be a practical protocol for implementing long-distance quantum communication without suffering from transmission loss [13][14][15]. The scheme proposed in Ref.[13] divides a long distance into shorter elementary channels, stores and retrieves entanglement pairs, and extends the transmission distance via entanglement swapping. Quantum memory, a storage device mapping quantum state between light and matter, is a crucial component of the quantum repeater. Processing a particular task or waiting for the completion of others requires a quantum state to be stored in memory for a long enough time. Therefore, quantum memory with high storage efficiency (SE), which is defined as the ratio of recalled to input photon energies, and long coherence time are the keys to successful operation of long-distance quantum communication and quantum information processing.The fractional delay (FD) or delay-bandwidth product at 50% SE is a possible figure of merit for a memory in the no-cloning limit [16,17] or in the one-way quantum computation [18], where FD is defined as the ratio of storage time to the full-width-half-maximum (FWHM) pulse duration. Several memory devices based on different mechanisms, such as gradient photon echo, Raman interaction, and electromagnetically induced transparency (EIT), have been proposed and experimentally demonstrated. With the gradient echo memory, a maximum SE of 87% as well as the FD of 11 at 50% SE for classical light was demonstrated [6], and the recall fidelity can be as high as 98% for coherent pulses containing around one photon [7]. With a far-off-resonant Raman transition, Ref. [8] showed Raman memory with an SE of 43% and a coherence time of approximately 1 µs for 300-ps coherent light pulses.Slowing and storing light using the EIT effect [19,20] has been intensively explored in the past two dec...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.