This paper presents a preliminary study on establishing a mobile point-to-point (P2P) microwave air-bridging (MAB) between Unmanned Low Altitude Flying Platform (ULAFP) and backhaul telecommunication network. The proposed Sky-Net system relays telecom signal for general mobile cellphone users via ULAFP when natural disaster sweeps off Base Transceiver Stations (BTSs). Unlike the conventional fix point microwave bridging application, the ULAFP is cruising on a predefined mission flight path to cover a wider range of service. The difficulty and challenge fall on how to maintain antenna alignment accurately in order to provide the signal strength for MAB. A dual-axis rotation mechanism with embedded controller is designed and implemented on airborne and ground units for stabilizing airborne antenna and tracking the moving ULAFP. The MAB link is established in flight tests using the proposed antenna stabilizing/tracking mechanism with correlated control method. The result supports backbone technique of the Sky-Net mobile communication and verifies the feasibility of airborne e-Cell BTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.