As photoautotrophic prokaryotes, cyanobacteria are promising platforms for producing value-added bioproducts. However, few regulatory genetic parts and devices (e.g., inducible promoters and regulatory circuits) have been developed for these potential hosts. Furthermore, the devices that have been created respond only to a single input. To address these issues, we developed an inducible genetic circuit that generates heterologous proteins in response to oxygen, an environmental signal. To test its performance and utility in Synechocystis sp. PCC 6803, a model cyanobacterial strain, we connected this circuit to either heterologous nifHDK genes, which encode oxygen-sensitive nitrogenase's structural proteins, or a fluorescent protein gene. The circuit was transcriptionally activated to generate nifHDK transcripts or fluorescent output only in low oxygen conditions. We expanded the oxygen-responsive circuit into a more complex circuit by building a two-input AND gate, which allows Synechocystis to specifically control expression of the fluorescent reporter in response to two signals, low oxygen and high anhydrotetracycline. To our knowledge, the AND gate is the first complex logic circuit built in a cyanobacterial strain. This work expands the synthetic biology tools available for complex gene expression in cyanobacteria, increasing their potential as biotechnology platforms.
Viral diseases have contributed significantly to worldwide morbidity and mortality throughout history. Despite the existence of therapeutic treatments for many viral infections, antiviral resistance and the threat posed by novel viruses highlight the need for an increased number of effective therapeutics. In addition to small molecule drugs and biologics, antimicrobial peptides (AMPs) represent an emerging class of potential antiviral therapeutics. While AMPs have traditionally been regarded in the context of their antibacterial activities, many AMPs are now known to be antiviral. These antiviral peptides (AVPs) have been shown to target and perturb viral membrane envelopes and inhibit various stages of the viral life cycle, from preattachment inhibition through viral release from infected host cells. Rational design of AMPs has also proven effective in identifying highly active and specific peptides and can aid in the discovery of lead peptides with high therapeutic selectivity. In this review, we highlight AVPs with strong antiviral activity largely curated from a publicly available AMP database. We then compile the sequences present in our AVP database to generate structural predictions of generic AVP motifs. Finally, we cover the rational design approaches available for AVPs taking into account approaches currently used for the rational design of AMPs.
The prevalence and cost of wounds pose a challenge to patients as well as the healthcare system. Wounds can involve multiple tissue types and, in some cases, become chronic and difficult to treat. Comorbidities may also decrease the rate of tissue regeneration and complicate healing. Currently, treatment relies on optimizing healing factors rather than administering effective targeted therapies. Owing to their enormous diversity in structure and function, peptides are among the most prevalent and biologically important class of compounds and have been investigated for their wound healing bioactivities. A class of these peptides, called cyclic peptides, confer stability and improved pharmacokinetics, and are an ideal source of wound healing therapeutics. This review provides an overview of cyclic peptides that have been shown to promote wound healing in various tissues and in model organisms. In addition, we describe cytoprotective cyclic peptides that mitigate ischemic reperfusion injuries. Advantages and challenges in harnessing the healing potential for cyclic peptides from a clinical perspective are also discussed. Cyclic peptides are a potentially attractive category of wound healing compounds and more research in this field could not only rely on design as mimetics but also encompass de novo approaches as well.
Biological weapons have been used for thousands of years, but recent advances in synthesis technologies have made peptide and protein toxin production more accessible and pose a threat to biosecurity worldwide. Natural toxins such as conotoxins, certain hemolytic compounds, and enterotoxins are peptide agents that can be synthesized in an environment with weak biosecurity measures and rudimentarily weaponized for limited use against smaller targets for lethal or nonlethal effects. Technological advances are changing the threat landscape around biological weapons and potentially facilitating a shift from state sponsored to more micro-level threats stemming from terror cells, insider threats, and lone wolf attacks. Here, we present the reader with an overview of the threat of peptide and protein toxins, provide examples of potent peptide toxins, and introduce capabilities of a proposed biosecurity program utilizing artificial intelligence that unifies commercial nucleotide and peptide synthesis vendors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.