The flow driven by variations in surface tension round a hemispherical gas or vapour bubble on a heated wall has been investigated numerically for steady-state conditions over a wide range of values of dimensionless parameters, and experimentally for one set of conditions. Although six parameters are needed to specify the flow conditions, the magnitude of the liquid flow normal to the heated wall is determined primarily by tihe Marangoni number, Prandtl number and the Biot number based on the effective heat-transfer coefficient at the liquid-gas interface. The interior temperature of the bubble depends in addition on the thermal conductivity ratio of the liquid and the wall material. The flow is very sensitive t o the presence of surface-active contaminants. For water, calculations and experimental observations both indicate that contamination which lowers the static surface tension by only 0.1% may suppress the thermocapillary motion.
The purpose of this study was to investigate the effects of the 8-week dynamic moment of inertia (DMOI) bat training on swing velocity, batted-ball speed, hitting distance, muscle power, and grip force. The DMOI bat is characterized in that the bat could be swung more easily by reducing the moment of inertia at the initial stage of swing without decreasing the bat weight and has a faster swing velocity and lower muscle activity. Seventeen varsity baseball players were randomly assigned to the DMOI bat training group (n = 9) and the normal bat training group (n = 8). The training protocol was 7 swings each set, 5-8 sets each time, 3 times each week, and 8 weeks' training period. The results showed that the swing training with the DMOI bat for 8 weeks significantly increased swing velocity by about 6.20% (96.86 ± 8.48 vs. 102.82 ± 9.93 km·h(-1)), hitting distance by about 6.69% (80.06 ± 9.16 vs. 84.99 ± 7.26 m), muscle power of the right arm by about 12.04% (3.34 ± 0.41 vs. 3.74 ± 0.61 m), and muscle power of the left arm by about 8.23% (3.36 ± 0.46 vs. 3.61 ± 0.39 m) (p < 0.05). Furthermore, the DMOI bat training group had a significantly better change percentage in swing velocity, hitting distance, and grip force of the left hand than did the normal bat training group (p < 0.05). The findings suggested that the swing training with the DMOI bat has a positive benefit on swing performance and that the DMOI bat could be used as a new training tool in baseball.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.