Epstein-Barr Virus (EBV) replication and transcription activator (Rta/BRLF1) is an immediate-early transcription factor that controls the conversion of the latent viral genome into one undergoing lytic replication. By using a doxycycline-inducible expression system, the present study demonstrates that EBV Rta efficiently elicits growth arrest in the human epithelial cell line HEK293. In cells arrested by EBV Rta, the expression of p21 (CDKN1A), p27 (CDKN1B) and cyclin E were increased. In contrast, the levels of cyclin D1, CDK4 and CDK6 were sharply decreased. Activation of the host cell DNA damage response (DDR), indicated by the increasing phosphorylation of H2AX and p53 Ser15, was observed on day 3 and day 5 after EBV Rta expression, respectively. Finally, EBV Rta arrested cells exhibited strong senescence-associated β-galactosidase staining on day 10 after doxycycline induction. Together, these results indicate that, in addition to triggering viral lytic replication in epithelial cells, EBV Rta concurrently initiates a cellular senescence program that was previously undocumented. This finding, showing Rta may be centrally involved in inducing a host cell state amenable to efficient viral reproduction, in addition to its previously characterized regulation of viral transcription, provides new perspectives in understanding EBV pathogenesis.
Epstein–Barr virus (EBV) Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox)-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV), to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1) an ideal environment for virus reactivation if EBV or KSHV coexists and (2) a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation.
BackgroundThe replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is a molecular switch that initiates a productive replication of latent KSHV genomes. KSHV RTA (K-RTA) is composed of 691 amino acids with high Ser and Thr content (17.7%), but to what extent these Ser and Thr are modified in vivo has not been explored.MethodsBy using tandem mass spectrometric analysis of affinity-purified FLAG tagged K-RTA, we sought to identify Ser and Thr residues that are post-translationally modified in K-RTA.ResultsWe found that K-RTA is an O-GlcNAcylated protein and Thr-366/Thr-367 is the primary motif with O-GlcNAcylation in vivo. The biological significance of O-GlcNAc modified Thr-366 and Thr-367 was assessed by site-specific amino acid substitution. Replacement of Thr with Ala at amino acid 366 or 367 caused a modest enhancement of K-RTA transactivation activity in a luciferase reporter assay and a cell model for KSHV reactivation. By using co-immunoprecipitation coupled with western blot analysis, we showed that the capacity of K-RTA in associating with endogenous PARP1 was significantly reduced in the Thr-366/Thr-367 O-GlcNAc mutants. PARP1 is a documented negative regulator of K-RTA that can be ascribed by the attachment of large negatively charged polymer onto K-RTA via PARP1's poly (ADP-ribose) polymerase activity. In agreement, shRNA-mediated depletion of O-GlcNAc transferase (OGT) in KSHV infected cells augmented viral reactivation and virus production that was accompanied by diminished K-RTA and PARP1 complexes.ConclusionsKSHV latent-lytic switch K-RTA is modified by cellular O-GlcNAcylation, which imposes a negative effect on K-RTA transactivation activity. This inhibitory effect involves OGT and PARP1, two nutritional sensors recently emerging as chromatin modifiers. Thus, we speculate that the activity of K-RTA on its target genes is continuously checked and modulated by OGT and PARP1 in response to cellular metabolic state.
Nasopharyngeal carcinoma (NPC) is a unique malignancy derived from the epithelium of the nasopharynx. Despite great advances in the development of radiotherapy and chemotherapy, relapse and metastasis in NPC patients remain major causes of mortality. Evidence accumulated over recent years indicates that Epstein-Barr virus (EBV) lytic replication plays an important role in the pathogenesis of NPC and inhibition of EBV reactivation is now being considered as a goal for the therapy of EBV-associated cancers. With this in mind, a panel of dietary compounds was screened and emodin was found to have potential anti-EBV activity. Through Western blotting, immunofluorescence, and flow cytometric analysis, we show that emodin inhibits the expression of EBV lytic proteins and blocks virion production in EBV- positive epithelial cell lines. In investigating the underlying mechanism, reporter assays indicated that emodin represses Zta promoter (Zp) and Rta promoter (Rp) activities, triggered by various inducers. Mapping of the Zp construct reveals that the SP1 binding region is important for emodin-triggered repression and emodin is shown to be able to inhibit SP1 expression, suggesting that it likely inhibits EBV reactivation by suppression of SP1 expression. Moreover, we also show that emodin inhibits the tumorigenic properties induced by repeated EBV reactivation, including micronucleus formation, cell proliferation, migration, and matrigel invasiveness. Emodin administration also represses the tumor growth in mice which is induced by EBV activation. Taken together, our results provide a potential chemopreventive agent in restricting EBV reactivation and NPC recurrence.
The replication and transcription activator (RTA) of Kaposi’s sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full transcriptional potency of K-RTA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.