Multiple resonance (MR) type thermally activated delayed fluorescence (TADF) material is currently a research hotspot in organic light‐emitting diodes (OLEDs) due to their high color purity and high exciton utilization. However, there are only a handful of MR‐TADF emitters with emissions beyond the blue‐to‐green region. The very limited emission colors for MR‐TADF emitters are mainly caused by the fact that so far molecular modifications of MR‐TADF do not offer much change in the emission colors. Here, we report a new approach to modifying a prototypical MR core of DABNA by fusing carbazoles to the MR framework. The carbazole‐fused molecule (TCZ‐F‐DABNA) basically maintains the MR‐dominated features of DABNA while red‐shifting the emission. Its OLED achieves an external quantum efficiency of 39.2 % with a peak at 588 nm, which is a record‐high efficiency for OLEDs with peaks beyond 560 nm. This work provides a new approach for significantly tunning emission colors of MR‐TADF emitters.
Multiple resonance (MR) typed thermally activated delayed fluorescence (TADF) emitters have attracted much recent attention for their narrow emission spectra and high photoluminescence quantum yields (PLQYs). Spectral broadening and concentration...
Two multi-resonance (MR) thermally activated delayed fluorescence (TADF) analogous materials, BNCzPXZ and BNCzPTZ, respectively integrating oxygen and sulfur elements were compared to in-depth investigate the influences of introducing elements of...
Multiple resonance (MR) type thermally activated delayed fluorescence (TADF) material is currently a research hotspot in organic light‐emitting diodes (OLEDs) due to their high color purity and high exciton utilization. However, there are only a handful of MR‐TADF emitters with emissions beyond the blue‐to‐green region. The very limited emission colors for MR‐TADF emitters are mainly caused by the fact that so far molecular modifications of MR‐TADF do not offer much change in the emission colors. Here, we report a new approach to modifying a prototypical MR core of DABNA by fusing carbazoles to the MR framework. The carbazole‐fused molecule (TCZ‐F‐DABNA) basically maintains the MR‐dominated features of DABNA while red‐shifting the emission. Its OLED achieves an external quantum efficiency of 39.2 % with a peak at 588 nm, which is a record‐high efficiency for OLEDs with peaks beyond 560 nm. This work provides a new approach for significantly tunning emission colors of MR‐TADF emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.