The standard particle swarm optimization (PSO) algorithm converges very fast, while it is very easy to fall into the local extreme point. According to waiting effect among particles with mean-optimal position(MP), the quantum-behaved particle swarm optimization (QPSO) algorithm can prevent the particle prematurely from falling into local extreme point, but its convergence speed is slow and convergence precision is still low. In order to further improve the precision of QPSO algorithm, the evaluation method of $delta$ trap characteristic length $L(t)$ of wave function for describing the particle's state is modified. In QPSO, a random weight to each particle in swarm is introduced, and according to the order of the each particle best position's fitting value, there are three evaluation programs for $L(t)$, which are random-weight mean-optimal position(RMP), reverse-order random-weight mean-optimal position(RRMP) and same-order random-weight mean-optimal position(SRMP). Through the test of several typical functions, its result shows that the convergence accuracy of QPSO with RMP and RRMP is better than those of QPSO with MP, so the evaluation of $L(t)$ with RMP and RRMP is feasible and effective
This paper mainly studies the communication performance of visible light communication link in fire smoke environment. Compared with the previous studies, this study no longer only considers a single wavelength and considers the influence of smoke and background light noise. Firstly, the variation of background light noise caused by sunlight during a day was analyzed, then signal-to-noise ratio (SNR) and bit error rate (BER) of the visible light communication link in fire smoke environment with different visibility were calculated, and finally, the variation of received power with the angle β between the LED optical axis and the communication link (from LED to receiver) was analyzed. The results show that, during a day from 07:00 to 18:30, background light noise first increases and then decreases, BER changes in the same trend and reaches the maximum at about 13:00, while SNR changes in the opposite trend and reaches the minimum at about 13:00. When visibility is 100 m, the maximum difference of SNR between 7:00 and 13:00 is about 19 dB, and the maximum difference of BER is about 5.3E-10. At 7:00, the maximum difference of SNR is about 13 dB between the visibility of 1 m and the visibility of 100 m, and the maximum difference of BER is about 1.44E − 11, and received power decreases with the increase of β. In addition, SNR increases with visibility of fire smoke environment, and BER changes in the opposite trend. Lastly, in order to enhance the performance of visible light communication in fire smoke environment, this paper gives the transmitting power scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.