Abstract. The early Eocene (56 to 48 million years ago) is inferred to have
been the most recent time that Earth's atmospheric CO2 concentrations
exceeded 1000 ppm. Global mean temperatures were also substantially warmer
than those of the present day. As such, the study of early Eocene climate provides insight
into how a super-warm Earth system behaves and offers an opportunity to
evaluate climate models under conditions of high greenhouse gas forcing. The
Deep Time Model Intercomparison Project (DeepMIP) is a systematic
model–model and model–data intercomparison of three early Paleogene time
slices: latest Paleocene, Paleocene–Eocene thermal maximum (PETM) and early
Eocene climatic optimum (EECO). A previous article outlined the model
experimental design for climate model simulations. In this article, we
outline the methodologies to be used for the compilation and analysis of
climate proxy data, primarily proxies for temperature and CO2. This
paper establishes the protocols for a concerted and coordinated effort to
compile the climate proxy records across a wide geographic range. The
resulting climate “atlas” will be used to constrain and evaluate climate
models for the three selected time intervals and provide insights into the
mechanisms that control these warm climate states. We provide version 0.1 of
this database, in anticipation that this will be expanded in subsequent
publications.
[1] Here we present combined radioisotopic dating (U-Pb zircon) and cyclostratigraphic analysis of the carbon isotope excursion at the Paleocene-Eocene (P-E) boundary in Spitsbergen to determine the numerical age of the boundary. Incorporating the total uncertainty from both radioisotopic and cyclostratigraphic data sets gives an age ranging from 55.728 to 55.964 Ma, within error of a recently proposed astronomical age of ∼55.93 Ma. Combined with the assumption that the Paleocene Epoch spans twenty-five 405 kyr cycles, our new age for the boundary suggests an age of ∼66 Ma for the Cretaceous-Paleogene boundary. Furthermore, our P-E boundary age is consistent with the hypothesis that the onset of the Paleocene-Eocene thermal maximum at the boundary occurred on the falling limb of a 405 kyr cycle, suggesting the event was initiated by a different mechanism to that which triggered the other early Eocene hyperthermals.
a b s t r a c tWell-preserved marine fossils in carbonate rocks permit detailed studies of the end-Permian extinction event in the marine realm. However, the rarity of fossils in terrestrial depositional environments makes it more challenging to attain a satisfactory degree of resolution to describe the biotic turnover on land. Here we present new sedimentological, paleontological and geochemical (X-ray fluorescence) analysis from the study of four terrestrial sections (Chahe, Zhejue, Mide and Jiucaichong) in Western Guizhou and Eastern Yunnan (Yangtze Platform, South China) to evaluate paleoenvironmental changes through the Permian-Triassic transition.Our results show major differences in the depositional environments between the Permian Xuanwei and the Triassic Kayitou formations with a change from fluvial-lacustrine to coastal marine settings. This change is associated with a drastic modification of the preservation mode of the fossil plants, from large compressions to small comminuted debris. Plant fossils spanning the Permian-Triassic boundary show the existence of two distinct assemblages: In the Xuanwei Formation, a Late Permian (Changhsingian) assemblage with characteristic Cathaysian wetland plants (mainly Gigantopteris dictyophylloides, Gigantonoclea guizhouensis, G. nicotianaefolia, G. plumosa, G. hallei, Lobatannularia heinanensis, L. cathaysiana, L. multifolia, Annularia pingloensis, A. shirakii, Paracalamites stenocostatus, Cordaites sp.) is identified. In the lowermost Kayitou Formation, an Early Triassic (Induan) Annalepis-Peltaspermum assemblage is shown, associated with very rare, relictual gigantopterids. Palynological samples are poor, and low yield samples show assemblages almost exclusively represented by spores. A 1 m thick zone enriched in putative fungal spores was identified near the top of the Xuanwei Formation, including diverse multicellular forms, such as Reduviasporonites sp. This interval likely corresponds to the PTB ''fungal spike'' conventionally associated with land denudation and ecosystem collapse. While the floral turnover is evident, further studies based on plant diversity would be required in order to assess contribution linked to the end-Permian mass extinction versus local paleoenvironmental changes associated with the transition between the Xuanwei and Kayitou formations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.