Recently, materials with controlled oil/water separation ability became a new research focus. Herein, we report a novel copper mesh film, which is superhydrophobic and superhydrophilic for nonalkaline water and alkaline water, respectively. Meanwhile, the film shows superoleophobicity in alkaline water. Using the film as a separating membrane, the oil/water separating process can be triggered on-demand by changing the water pH, which shows a good controllability. Moreover, it is found that the nanostructure and the appropriate pore size of the substrate are important for realization of a good separation effect. This paper offers a new insight into the application of surfaces with switchable wettability, and the film reported here has such a special ability that allows it to be used in other applications, such as sewage purification, filtration, and microfluidic device.
Surfaces with controlled oil wettability in water have great potential for numerous underwater applications. In this work, we report a smart surface with pH-responsive oil wettability. The surface shows superoleophilicity in acidic water and superoleophobicity in basic water. Reversible transition between the two states can be achieved through alteration of the water pH. Such smart ability of the surface is due to the cooperation between the surface chemistry variation and hierarchical structures on the surface. Furthermore, we also extended this strategy to the copper mesh substrate and realized the selective oil/water separation on the as-prepared film. This paper reports a new surface with excellently controllable underwater oil wettability, and we believe such a surface has a lot of applications, for instance, microfluidic devices, bioadhesion, and antifouling materials.
Surfaces with controlled underwater oil wettability would offer great promise in the design and fabrication of novel materials for advanced applications. Herein, we propose a new approach based on self-assembly of mixed thiols (containing both HS(CH2)9CH3 and HS(CH2)11OH) on nanostructured copper substrates for the fabrication of surfaces with controlled underwater oil wettability. By simply changing the concentration of HS(CH2)11OH in the solution, surfaces with controlled oil wettability from the underwater superoleophilicity to superoleophobicity can be achieved. The tunable effect can be due to the synergistic effect of the surface chemistry variation and the nanostructures on the surfaces. Noticeably, the amplified effect of the nanostructures can provide better control of the underwater oil wettability between the two extremes: superoleophilicity and superoleophobicity. Moreover, we also extended the strategy to the copper mesh substrates and realized the selective oil/water separation on the as-prepared copper mesh films. This report offers a flexible approach of fabricating surfaces with controlled oil wettability, which can be further applied to other ordinary materials, and open up new perspectives in manipulation of the surface oil wettability in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.