Microporous polycarbazole via straightforward carbazole-based oxidative coupling polymerization is reported. The synthesis route exhibits cost-effective advantages, which are essential for scale-up preparation. The Brunauer-Emmett-Teller specific surface area for obtained polymer is up to 2220 m(2) g(-1). Gas (H(2) and CO(2)) adsorption isotherms show that its hydrogen storage can reach to 2.80 wt % (1.0 bar and 77 K) and the uptake capacity for carbon dioxide is up to 21.2 wt % (1.0 bar and 273 K), which show a promising potential for clean energy application and environmental field. Furthermore, the high selectivity toward CO(2) over N(2) and CH(4) makes the obtained polymer possess potential application in gas separation.
A molten salt system is developed for low-temperature metallothermic reduction of various silicates or silica to crystalline Si nanoparticles as high-performance anode materials.
The low capacity and unsatisfactory rate capability of hard carbon still restricts its practical application for Li/K‐ion batteries. Herein, a low‐cost and large‐scale method is developed to fabricate phosphorus‐doped hard carbon (PHC‐700) by crosslinking phosphoric acid and epoxy resin and followed by annealing at 700 °C. H3PO4 acts not only as a crosslinker to solidify epoxy resin for promoting the degree of graphitization and lowering the specific surface area, but also as phosphorus source for forming PC and PO bonds, thus providing more active sites for Li/K storage. As a result, the PHC‐700 electrode delivers a highly reversible capacity of 1294.8 mA h g−1 at 0.1 A g−1 and a capacity of 214 mA h g−1 after 10 000 cycles at 10 A g−1. As for potassium‐ion batteries, PHC‐700 exhibits a reversible capacity of 381.9 mA h g−1 at 0.1 A g−1 and a capacity of 260 mA h g−1 after 1000 cycles at 0.2 A g−1. In situ Raman and in situ NMR measurements reveal that the P‐containing bonds can enhance the adsorption to alkali metal ions, and the PC bond can participate in electrochemical redox reaction by forming Lix
PCy
. Additionally, P‐doped hard carbon shows better structural/interfacial stability for improved long‐term cycling stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.