The realization of superconductivity at the interface between a topological insulator and an iron-chalcogenide compound is highly attractive for exploring several recent theoretical predictions involving these two new classes of materials. Here we report transport measurements on a Bi 2 Te 3 /FeTe heterostructure fabricated via van der Waals epitaxy, which demonstrate superconductivity at the interface, which is induced by the Bi 2 Te 3 epilayer with thickness even down to one quintuple layer, though there is no clear-cut evidence that the observed superconductivity is induced by the topological surface states. The two-dimensional nature of the observed superconductivity with the highest transition temperature around 12 K was verified by the existence of a Berezinsky-Kosterlitz-Thouless transition and the diverging ratio of in-plane to out-plane upper critical field on approaching the superconducting transition temperature. With the combination of interface superconductivity and Dirac surface states of Bi 2 Te 3 , the heterostructure studied in this work provides a novel platform for realizing Majorana fermions.
We present a study of the surface reactivity of a Pd/Bi2Te3 thin film heterostructure. The topological surface states from Bi2Te3, being delocalized and robust owing to their topological natures, were found to act as an effective electron bath that significantly enhances the surface reactivity of palladium in the presence of two oxidizing agents, oxygen and tellurium respectively, which is consistent with a theoretical calculation. The surface reactivity of the adsorbed tellurium on this heterostructure is also intensified possibly benefitted from the effective transfer of the bath electrons. A partially inserted iron ferromagnetic layer at the interface of this heterostructure was found to play two competing roles arising from the higher-lying d-band center of the Pd/Fe bilayer and the interaction between the ferromagnetism and the surface spin texture of Bi2Te3 on the surface reactivity and their characteristics also demonstrate that the electron bath effect is long-lasting against accumulated thickness of adsorbates.
We have investigated the anisotropic magnetic responses of a 2D-superconducting Bi2Te3/FeTe heterostructure. Cross-sectional STEM imaging revealed that the excess Fe atoms in the FeTe layer occupy specific interstitial sites. They were found to show strong anisotropic magnetic responses under a magnetic field either perpendicular or parallel to the sample surface. Under perpendicular magnetic fields within 1000 Oe, conventional paramagnetic Meissner effect, superconducting diamagnetism, and anomalous enhancement of magnetization successively occur as the magnetic field increases. In contrast, under parallel magnetic fields, superconducting diamagnetism was not observed explicitly in the magnetization measurements and the anomalous enhancement of magnetization appears only for fields higher than 1000 Oe. The observed strong magnetic anisotropy provides further evidence that the induced superconductivity at the interface of the Bi2Te3/FeTe heterostucture has a 2D nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.