Hepatocellular carcinoma (HCC) is one of the leading causes of mortality worldwide. The aim of the present study was to evaluate the distribution and the therapeutic effect of 188Re-Tin-colloid micro-particles in subcutaneous HCC-bearing mice. The synthesis and characterization of micro-particles labeled with the 188Re isotope were performed. The micro-particles were injected into the tumor site subcutaneously in the BNL HCC-bearing mice with three treatment groups, normal saline, 188Re micro-particles, and 188Re-Tin-colloid micro-particles. The results of biodistribution showed that major radioactivity (188Re) of 188Re-Tin-colloid micro-particles (18.69 ± 4.28 %ID/g) remained at the tumor sites, compared with 188Re micro-particles (0.21 ± 0.12 %ID/g), 24 h post injection. Following the injection of 188Re-Tin-colloid micro-particles for 14 days, all BNL tumors in mice were regressed during the observation period. By contrast, all of the mice treated with normal saline or 188Re micro-particles had died by 24 and 28 days, respectively. The 188Re-Tin-colloid micro-particles demonstrated high accumulation and therapeutic potential in the subcutaneous HCC-bearing mice.
Radiolabeled Lipiodol ® (Guerbet, Villepinte, France) is routinely used in hepatoma therapy. The temperature-sensitive hydrogel polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol triblock copolymer is used as an embolic agent and sustained drug release system. This study attempted to combine the polyethylene glycol-b-poly-DL-lactic acid-co-glycolic acid-b-polyethylene glycol hydrogel and radio-labeled Lipiodol to form a new radio-thermogelling emulsion, rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol/hydrogel ( 188 Re-ELH). The therapeutic potential of 188 Re-ELH was evaluated in a rodent hepatoma model. Rhenium-188 chelated with N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride was extracted with Lipiodol to obtain rhenium-188–N,N’-1,2-ethanediylbis-L-cysteine diethyl-ester dihydrochloride–Lipiodol ( 188 Re-EL), which was blended with the hydrogel in equal volumes to develop 188 Re-ELH. The 188 Re-ELH phase stability was evaluated at different temperatures. Biodistribution patterns and micro-single-photon emission computed tomography/computed tomography images in Sprague Dawley rats implanted with the rat hepatoma cell line N1-S1 were observed after in situ tumoral injection of ~3.7 MBq 188 Re-ELH. The therapeutic potential of 188 Re-EL (48.58±3.86 MBq/0.1 mL, n=12) was evaluated in a 2-month survival study using the same animal model. The therapeutic effects of 188 Re-ELH (25.52±4.64 MBq/0.1 mL, n=12) were evaluated and compared with those of 188 Re-EL. The responses were assessed by changes in tumor size and survival rates. The 188 Re-ELH emulsion was stable in the gel form at 25°C–35°C for >52 hours. Biodistribution data and micro-single-photon emission computed tomography/computed tomography images of the 188 Re-ELH group indicated that most activity was selectively observed in hepatomas. Long-term 188 Re-ELH studies have demonstrated protracted reductions in tumor volumes and positive effects on the survival rates (75%) of N1-S1 hepatoma-bearing rats. Conversely, the 2-month survival rate was 13% in the control sham group. Therapeutic responses differed significantly between the two groups ( P <0.005). Thus, the hydrogel enhanced the injection stability of 188 Re-EL in an animal hepatoma model. Given the synergistic results, direct 188 Re-ELH intratumoral injection is a potential therapeutic alternative for hepatoma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.