Background: In the early morning of 20 August 2014, a high-intensity/low-duration rainstorm occurred in Hiroshima City, in southwest Japan. Within 3 h, the rainfall exceeded 200 mm, which is more than twice the monthly-average for this area. This heavy rainfall triggered 107 debris flows and 59 shallow slides, which caused 44 injuries, and 74 deaths. 133 houses were destroyed and an additional 296 houses were severely damaged. Most of the debris flows occurred in heavily weathered granite slopes, while others occurred in weathered hornfels slopes. A field investigation on two of the gullies in which the debris flows occurred was conducted in order to better understand the characteristics of the debris flows. Results: The main purpose of this investigation was to understand the geomorphological and geological conditions, the soil properties, and the initiation/traveling mechanisms of the debris flows. The longitudinal and cross-sectional profiles along the two gullies were measured, beginning at the source areas and ending at the downstream limits of the deposition areas. For soil property determination, disturbed and undisturbed soil samples were collected for laboratory tests which included in-situ density measurement, grain size distribution analysis and triaxial compression tests. In the triaxial compression tests, consolidated-undrained compression tests under different confining stresses were conducted to measure the strength parameters of the strongly-weathered granite. Pore-water pressure controlled triaxial test was conducted to simulate the failure process of the slope given an increase of the pore-water pressure. Chemical analyses of the granite samples were also conducted in order to understand the degree of weathering of the granite in the debris flow gully. Conclusions: A high intensity, short duration, localized rainfall event initiated debris flows in very steep slopes. These were initiated as a thin sliding mass in weathered coarse-grained granite and hornfels, and became two different types of debris flow after traveling down the slopes. The slope angle and the cross section of the gully, and the grain size of the debris significantly controlled the motion behavior of the debris flows.
A yellow-pigmented, Gram-negative, rod-shaped, non-spore-forming bacterium, strain CC-TPE-1 T , was isolated from oil-contaminated soil near an oil refinery located in Kaohsiung County, Taiwan. 16S rRNA gene sequence analysis of strain CC-TPE-1 T showed highest sequence similarity to Novosphingobium naphthalenivorans TUT562 T (98.1 %), N. panipatense SM16 T (97.9 %) and N. mathurense SM117 T (97.6 %) and lower (,97 %) sequence similarity to all other Novosphingobium species. DNA-DNA hybridizations of strain CC-TPE-1 T with N.naphthalenivorans DSM 18518 T , N. panipatense SM16 T and N. mathurense SM117 T showed low relatedness of 30 % (reciprocal 35 %), 29.1 % (reciprocal 30.6 %) and 35 % (reciprocal 23.6 %), respectively. The major respiratory quinone was ubiquinone Q-10, the predominant fatty acid was C 18 : 1 v7c (49.9 %) and three 2-hydroxy fatty acids, C 14 : 0 2-OH (8.2 %), C 15 : 0 2-OH (2.45 %) and C 16 : 0 2-OH (1.05 %), were detected. Polar lipids consisted mainly of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, two sphingoglycolipids, phosphatidylmonomethylethanolamine and several unidentified lipids, and a yellow pigment was also detected. The polyamine pattern contained the single major compound spermidine. Characterization by 16S rRNA gene sequence analysis, physiological parameters, pigment analysis and polyamine, ubiquinone, polar lipid and fatty acid compositions revealed that strain CC-TPE-1 T represents a novel species of the genus Novosphingobium, for which we propose the name Novosphingobium soli sp. nov., with the type strain CC-TPE-1The genus Novosphingobium was proposed as a consequence of the dissection of the genus Sphingomonas (Yabuuchi et al., 1990), which was based on phylogenetic and chemotaxonomic analyses (Takeuchi et al., 2001). At the time of writing, 18 Novosphingobium species have been described with validly published names: the type species Novosphingobium capsulatum (Yabuuchi et al., 1990), N. rosa (Takeuchi et al., 1995) Abbreviations: pNA, p-nitroanilide; pNP, p-nitrophenyl.
The present study investigated the inhibitory effects of the commercial tetrasaccharide tomato glycoalkaloid tomatine and the aglycone tomatidine on three mucosal pathogenic protozoa that are reported to infect humans, cattle, and cats, respectively: Trichomonas vaginalis strain G3, Tritrichomonas foetus strain D1, and Tritrichomonas foetus strain C1. A preliminary screen showed that tomatine at 100 μM concentration completely inhibited the growth of all three trichomonads. In contrast, the inhibition of all three pathogens by tomatidine was much lower, suggesting the involvement of the lycotetraose carbohydrate side chain in the mechanism of inhibition. Midpoints of concentration-response sigmoid plots of tomatine on the three strains correspond to IC values, the concentration that inhibits 50% of growth of the pathogenic protozoa. The concentration data were used to calculate the IC values for G3, D1, and C1 of 7.9, 1.9, and 2.2 μM, respectively. The results show an approximately 4-fold variation from the lowest to the highest value (lowest activity). Although the inhibition by tomatine was not as effective as that of the medicinal drug metronidazole, the relatively low IC values for both T. vaginalis and T. foetus indicated tomatine as a possible natural alternative therapeutic for trichomoniasis in humans and food-producing (cattle and pigs) and domestic (cats) animals. Because tomatine has the potential to serve as a new antiprotozoan functional (medical) food, the distribution of this glycoalkaloid in tomatoes and suggestions for further research are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.