This study presents a compact L-points discrete cosine transform (DCT) hardware accelerator for M-points Mel-scale Frequency Cepstral Coefficients (MFCC). The main contributions of this work can be summarized as 1) proposing an algorithm with lower complexity; 2) achieving higher accuracy performance; 3) implementing a low-cost accelerator with a unique group of cosine coefficients. For algorithm derivation, the proposed method converts the original formula into the type IV of discrete cosine transform (DCT-IV) with a preprocessing procedure. The kernel computation of DCT-IV can be further derived into the same cosine multiplication with the proposed preprocessing. Therefore, a total of (M-1) (L-1) additions, (M-1) L multiplications, and L coefficients are required for the computation. Compared with Jo et al.'s algorithm, the proposed method respectively reduces the number of additions and multiplications by 42.32 % and 41.67 %. Instead, the number of coefficients is increased by 33.33 %. Moreover, the proposed algorithm exhibits a higher peak signal-to-noise ratio (PSNR) value which is achieved at 90.1dB with a 16bit coefficient word length. For hardware realization, the FPGA implementation results show that it can operate at a clock rate of 135.85 MHz and requires only 113 combinational elements, 87 registers, 3 DSP multipliers, 64×16 bits RAM and 32×16 bits ROM. Overall, it would be a good choice for integrating MFCC applications in the future.INDEX TERMS discrete cosine transform (DCT); Hardware Accelerator; Mel-scale Frequency Cepstral Coefficients (MFCC)
When a band is performing at a public occasion, certain sound effects are expected to be added to enliven the atmosphere. To achieve this effect, microphones and instruments are all connected to an audio mixer, then the expected audio output will be played through the speakers. However, sound engineers always spend plenty of time tuning the mixer until the satisfied results are obtained. This paper presents a smart digital mixer system that integrates touch control, speech control, and commonly used functions on an Android mobile platform to improve the mobility of audio mixer while tuning. The proposed system adopts a digital signal processor (DSP) as the core of the hardware architecture. The application provides a UI interface on an Android mobile phone in order to achieve the functions of speech recognition and touch control. The control commands will be transmitted to DSP via Bluetooth 5.0, self-defined Bluetooth packet format (SBPF), and data transfer controller (DTC). The main contribution of this work is to propose multiple functions of a mixer system with a convenient and interactive user interface. The experimental results show the average accuracy of all respondents reached 92.3%. Moreover, the proposed system has the advantage of having a low-cost hardware circuit design, and provides high flexibility of setting for the audio mixer system according to the user’s preference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.